This article explores the pivotal role of Vitamin A (retinoic acid) in manipulating Hox gene expression to direct profound developmental outcomes, specifically homeotic transformations in anuran models.
This article explores the pivotal role of Vitamin A (retinoic acid) in manipulating Hox gene expression to direct profound developmental outcomes, specifically homeotic transformations in anuran models. We synthesize foundational research, including recent findings on the induction of ectopic limbs in Rana ornativentris tadpoles, where Vitamin A administration triggers a cascade of Hox gene downregulation and limb gene activation. The content provides a methodological framework for applying these principles in regenerative and developmental biology, addresses common experimental challenges, and validates findings through comparative analysis with other model systems and human pathologies. This resource is tailored for researchers, scientists, and drug development professionals seeking to understand and harness Hox gene regulation for therapeutic innovation.
Hox genes are a family of evolutionarily conserved transcription factors that function as master regulators of embryonic development, playing a pivotal role in determining the identity of structures along the anteroposterior (head-to-tail) axis in bilaterian animals [1]. These genes encode proteins containing a characteristic homeodomain that facilitates DNA binding, enabling them to control the expression of downstream target genes that execute developmental programs [2]. In vertebrates, the 39 Hox genes are organized into four clusters (HOXA, HOXB, HOXC, and HOXD) located on different chromosomes [3]. Their expression follows the principle of collinearity, where the order of genes on the chromosome correlates with their spatial expression domains along the body axis and the timing of their activation during development [2] [4]. This spatially restricted expression creates a "Hox code"âa combinatorial signature of Hox gene expression that confers positional identity to embryonic tissues, thereby determining whether a segment will develop into cervical, thoracic, lumbar, or sacral vertebrae [5] [4].
The critical function of Hox genes in axial patterning is evident in their effects when misexpressed. Alterations in Hox expression patterns can lead to homeotic transformations, in which one segment of the axial skeleton develops the morphological characteristics of another [5] [4]. For example, in Prtg knockout mice, anterior homeotic transformations occur in the vertebral column, accompanied by significant alterations in Hox gene expression, resulting in an increased number of rib-bearing vertebrae [5]. Similarly, administration of exogenous retinoic acid (RA) during early gestation shifts the anterior expression boundaries of Hox genes and leads to vertebral transformations, highlighting the sensitivity of the Hox system to regulatory signals [4].
The precise spatiotemporal expression of Hox genes is coordinated by several key signaling pathways that integrate positional information within the developing embryo. The canonical Wnt/β-catenin pathway is crucial for activating anterior Hox genes (paralogs 1-5) that specify cervical and anterior thoracic identities [5]. This pathway often operates through intermediate transcription factors like Cdx2, which directly induces the expression of trunk Hox genes (paralogs 6-9) corresponding to posterior thoracic vertebrae [5].
For the specification of more posterior identities (lumbar, sacral, and caudal vertebrae), the TGFβ signaling pathway, particularly through the ligand GDF11, plays a dominant role [5]. GDF11 activates the SMAD2/3 transcription factors, which form complexes with SMAD4 and translocate to the nucleus to directly regulate posterior Hox genes (paralogs 10-13) [5]. Recent research has identified Protogenin (Prtg) as a key regulator that facilitates this trunk-to-tail transition in the Hox code by interacting with GDF11 and enhancing GDF11/pSMAD2 signaling activity [5].
Additionally, retinoic acid (RA) signaling exerts profound effects on Hox gene expression and axial patterning. RA can anteriorize Hox expression patterns, and its administration leads to corresponding homeotic transformations in the vertebral column, demonstrating its role as a potent modulator of the Hox code [4].
The following diagram illustrates the core signaling pathways that regulate Hox gene expression during axial patterning:
The amphibian anuran model system provides a remarkable demonstration of Hox gene regulation in action. When administered to regenerating tadpoles of species such as Rana ornativentris, vitamin A (retinol) can induce a dramatic homeotic transformation in which tails regenerate as ectopic limbs instead of normal tail structures [6]. This phenomenon represents a fundamental respecification of positional identity, with the regenerating blastema adopting a limb fate rather than its original tail fate.
Molecular analyses of this process have revealed that vitamin A exerts its effects through coordinated changes in Hox gene expression. Prior to the appearance of ectopic limb buds, researchers observed the downregulation of posterior Hox genes in the regenerating tail tissue [6]. This alteration in the Hox code precedes the upregulation of key limb-patterning genes such as pitx1, which marks the earliest stages of hindlimb bud formation [6]. The temporal sequence of these molecular eventsâfirst Hox gene repression, followed by activation of limb-specific genesâsuggests that Hox genes operate upstream of limb gene cascades in the hierarchy of positional control.
The experimental workflow below outlines the key stages in vitamin A-induced ectopic limb formation:
The following table summarizes the quantitative gene expression changes observed during vitamin A-induced homeotic transformation in anuran models:
Table 1: Gene Expression Changes During Vitamin A-Induced Homeotic Transformation
| Gene/Gene Group | Expression Change | Timing | Functional Significance |
|---|---|---|---|
| Posterior Hox genes | Significant downregulation | Precedes limb bud appearance | Permits fate transition from tail to limb identity |
| pitx1 | Marked upregulation | Follows Hox gene repression | Initiates hindlimb development program |
| Anterior Hox genes | Variable/context-dependent | During transformation | May contribute to proximal-distal patterning |
This protocol describes the methodology for inducing ectopic limb formation through vitamin A administration in regenerating tadpole tails, based on established procedures [6].
Materials:
Procedure:
Expected Results: Successful experiments will show downregulation of posterior Hox genes within 24-48 hours post-amputation, followed by upregulation of pitx1 by 48-72 hours, with visible limb bud formation apparent by 5-7 days.
This protocol adapts recently developed methods for studying trunk-to-tail Hox code transitions using human induced pluripotent stem cells (hiPSCs) [5].
Materials:
Procedure:
Expected Results: Wild-type cells should show sequential activation of posterior Hox genes in response to GDF11, while PRTG knockout lines will exhibit delayed posterior Hox gene expression, rescueable by GDF11 supplementation.
Table 2: Essential Research Reagents for Hox Gene and Axial Patterning Studies
| Reagent/Category | Specific Examples | Research Application | Key Function |
|---|---|---|---|
| Model Organisms | Rana ornativentris tadpoles, Mouse embryos, hiPSCs | Vitamin A studies, Genetic knockout models, In vitro differentiation | Provide in vivo and in vitro systems for manipulating and observing Hox gene function |
| Signaling Molecules | Vitamin A/Retinoic Acid, GDF11, BMP4, FGF2, CHIR99021 | Pathway activation studies, Differentiation protocols, Rescue experiments | Modulate signaling pathways that regulate Hox gene expression |
| Molecular Biology Tools | qPCR primers for Hox genes, RNA sequencing, in situ hybridization probes, Anti-pSMAD2 antibodies | Gene expression analysis, Protein localization, Pathway activity assessment | Detect and quantify Hox gene expression and pathway activity |
| Genetic Manipulation Tools | CRISPR-Cas9 systems (for PRTG knockout), siRNA/shRNA | Loss-of-function studies, Pathway dissection | Specifically disrupt genes of interest to establish functional relationships |
| p70 S6 Kinase substrate | p70 S6 Kinase Substrate | This p70 S6 Kinase substrate is for Research Use Only (RUO). It is not intended for diagnostic or therapeutic procedures. Explore its role in cell signaling research. | Bench Chemicals |
| Irbesartan-d6 | Irbesartan-d6, MF:C25H28N6O, MW:434.6 g/mol | Chemical Reagent | Bench Chemicals |
The experimental manipulation of Hox gene expression, particularly through vitamin A/retinoic acid signaling, represents a powerful approach for understanding the fundamental mechanisms of axial patterning [6] [4]. The anuran model system offers unique advantages for these studies due to its remarkable regenerative capacity and susceptibility to homeotic transformations. The molecular insights gained from these experimentsâspecifically the hierarchical relationship between Hox gene repression and activation of limb-patterning programsâprovide a paradigm for understanding how master regulatory genes control cell fate decisions.
Recent technical advances, including single-cell RNA sequencing, spatial transcriptomics, and in-situ sequencing, have dramatically enhanced our ability to resolve Hox expression patterns with unprecedented spatial and temporal resolution [2]. These technologies have revealed unexpected complexities in the Hox code, including the retention of anatomical Hox signatures in neural crest derivatives and distinct patterning in the dorsal and ventral spinal cord domains [2]. Furthermore, the development of hiPSC-derived presomitic mesoderm models provides a ethically accessible and genetically tractable human system for investigating Hox gene regulation and its pathophysiological implications [5].
From a translational perspective, understanding Hox gene regulation has significant implications for regenerative medicine, cancer biology, and therapeutic development. The demonstration that PRTG facilitates the trunk-to-tail Hox transition through GDF11/SMAD2 signaling [5] identifies potential therapeutic targets for modulating axial patterning in congenital disorders. Similarly, the comprehensive analysis of HOX gene dysregulation across cancer types [7] [3] highlights their potential as diagnostic markers and therapeutic targets in oncology. As research continues to unravel the intricate regulatory networks controlling Hox gene expression, new opportunities will emerge for manipulating these master regulators in both developmental and pathological contexts.
Retinoic acid (RA), the active metabolite of vitamin A, functions as a potent signaling molecule in vertebrate development, regulating diverse processes including axial patterning, limb development, and central nervous system organization. Its activity is primarily mediated through nuclear receptors (RARs and RXRs) that form heterodimers and bind to retinoic acid response elements (RAREs) in target gene regulatory regions [8] [9]. The RA signaling pathway exhibits remarkable robustness, maintaining physiological signaling levels despite nutritional and environmental fluctuations through a complex network of synthesizing and degrading enzymes [10]. This robustness ensures precise control of RA concentration, which is critical for its function as a morphogen that conveys positional information along developing body axes.
A principal mechanism by which RA patterns embryonic tissues is through the regulation of Hox genes, which encode transcription factors that determine anteroposterior identity [11] [12]. The connection between RA and Hox genes represents a fundamental evolutionarily conserved pathway for axial patterning across vertebrate species. In the context of anuran research, this relationship provides a powerful experimental framework for investigating how vitamin A manipulation can alter morphological outcomes through directed changes in Hox gene expression, particularly during processes such as tail regeneration and limb patterning [6].
Retinoic acid directly controls Hox gene expression through long-range regulatory elements that function across Hox clusters. Research has identified specific RAREs located at considerable distances from the Hox genes they regulate. For instance, in the HoxB cluster, two critical RAREsâDE-RARE and ENE-RAREâcooperatively control the rostral expansion of 5' Hoxb genes (Hoxb9âHoxb5) in the developing neural tube [13]. When both elements are inactivated, this rostral expansion is completely abolished, demonstrating their essential role in establishing anterior expression boundaries. DE-RARE exhibits remarkable regulatory potential, capable of anteriorizing 5' Hoxa gene expression when inserted into a HoxA cluster context [13].
The regulation follows principles of temporal and spatial collinearity, where 3' Hox genes are activated earlier and more anteriorly than 5' Hox genes in response to RA signaling [11]. This collinear response to RA has been observed in both developing embryos and in vitro systems, where treatment with RA induces sequential activation of Hox genes in a time- and concentration-dependent manner [11]. The mechanistic basis for this collinearity appears linked to the structural organization of Hox clusters and their differential sensitivity to RA signaling, creating a molecular code that patterns the anteroposterior axis [11].
Beyond direct regulation, RA modulates Hox expression through intermediary transcription factors. Substantial evidence indicates that Cdx homeobox genes function as crucial RA intermediaries in vertebrate vertebral specification [8]. Multiple lines of evidence support this pathway: Cdx members are expressed in overlapping domains in the posterior embryo; disruption of cdx1 or cdx2 results in vertebral homeotic transformations accompanied by altered Hox expression boundaries; and consensus Cdx binding motifs are present in several Hox promoters [8].
Research demonstrates that cdx1 is a direct RA target gene, establishing a regulatory cascade whereby RA directly controls cdx1 expression, which in turn regulates Hox genes [8]. This indirect pathway may explain why most RA-responsive Hox genes have not been shown to be direct RAR targets, suggesting Cdx members transduce RA signals to Hox transcription in specific developmental contexts. The existence of both direct and indirect pathways enables context-specific regulation of Hox genes by RA across different tissues and developmental stages.
Table 1: Molecular Pathways of RA-Mediated Hox Gene Regulation
| Regulatory Mechanism | Key Elements | Developmental Context | Functional Outcome |
|---|---|---|---|
| Direct Regulation | RAREs (DE-RARE, ENE-RARE) | Neural tube patterning [13] | Rostral expansion of Hoxb genes |
| Direct Regulation | RAR-RXR heterodimers | Vertebral specification [8] | Anteroposterior patterning |
| Indirect Regulation | Cdx1 transcription factor | Posterior embryo development [8] | Regulation of Hox expression boundaries |
| Gradient Formation | CYP26 enzymes | Limb patterning [14] | Proximodistal positional identity |
The anuran tadpole system provides a powerful experimental model for investigating RA-induced homeotic transformations. In species such as Rana ornativentris, tadpoles normally regenerate their tails after amputation, but vitamin A administration can induce formation of ectopic limbs instead of tails [6]. This dramatic homeotic transformation offers unique insights into how RA signaling reprograms developmental pathways.
A standardized protocol for this paradigm involves:
Molecular analysis of this phenomenon has revealed that RA-induced ectopic limb formation is preceded by downregulation of posterior Hox genes and subsequent upregulation of limb-patterning genes such as pitx1, suggesting Hox genes function upstream of limb gene activation in this pathway [6].
To quantify RA-mediated changes in Hox gene expression, several methodological approaches have been developed:
Whole-mount in situ hybridization: This technique allows spatial localization of Hox gene transcripts in intact embryos or regenerating tissues. Protocols typically involve:
Quantitative RT-PCR: For precise quantification of expression changes, qRT-PCR provides sensitive measurement of Hox transcript levels. The standard methodology includes:
BAC reporter constructs: Bacterial Artificial Chromosome reporters containing the HoxB cluster with serial labeling of multiple genes enable simultaneous monitoring of several Hox genes. These reporters faithfully recapitulate endogenous expression patterns, including RA-induced rostral expansion in neural tissues [13].
Table 2: Quantitative Hox Gene Expression Changes in Response to RA
| Experimental Context | Hox Genes Analyzed | Expression Changes | Biological Outcome |
|---|---|---|---|
| Anuran tail regeneration | Posterior Hox genes | Downregulation [6] | Ectopic limb induction |
| Mouse neural tube development | Hoxb5-b9 | Rostral expansion [13] | Anterior boundary shift |
| Axolotl limb regeneration | Hoxa9, Hoxa11, Hoxa13 | Distal-to-progressive activation [14] | Proximodistal patterning |
| Vertebral specification | Multiple Hox genes | Altered expression boundaries [8] | Homeotic transformations |
Experimental manipulation of RA signaling levels employs multiple pharmacological and genetic approaches:
RA administration: Exogenous RA is typically dissolved in DMSO or corn oil and administered to embryos or regenerating tissues. Delivery methods include:
CYP26 inhibition: To increase endogenous RA levels, CYP26 enzymes that catalyze RA breakdown can be inhibited using compounds such as liarozole or R115866. In axolotl limb regeneration, CYP26B1 inhibition in distal blastemas increases RA signaling and reprograms them to proximal identity, phenocopying RA treatment [14].
RAR antagonists: Compounds such as BMS493 or AGN194310 block RA signaling by binding to RARs and preventing transcriptional activation, allowing investigation of loss-of-function phenotypes.
A fundamental finding across vertebrate models is that RA-mediated Hox gene regulation directly controls axial patterning. Both RA deficiency and excess result in homeotic transformations of the axial skeleton, demonstrating the concentration-dependent nature of RA signaling [8]. In mouse models, RARγ null mutants display anterior homeotic transformations of cervical vertebrae, while compound RAR mutants exhibit more severe axial defects [8]. These transformations correlate with altered Hox expression patterns, supporting the hypothesis that RA patterns the vertebral column primarily through regulation of Hox genes.
The mechanistic basis for these transformations involves RA regulation of the Hox codeâthe combinatorial expression of Hox genes along the anteroposterior axis that specifies regional identity [11]. Through both direct regulation via RAREs and indirect regulation through intermediaries like Cdx genes, RA establishes precise spatial and temporal expression domains for Hox genes, which in turn determine morphological outcomes [8] [11]. Disruption of this precise regulation alters the Hox code, resulting in homeotic transformations where one vertebral segment acquires the identity of another.
RA signaling plays a critical role in establishing proximodistal (PD) positional identity in both developing and regenerating limbs. During axolotl limb regeneration, endogenous RA signaling is approximately 3.5 times higher in proximal blastemas compared to distal blastemas [14]. This RA gradient is established through localized expression of CYP26B1, which degrades RA in distal blastemas, creating a proximal-high to distal-low RA signaling gradient [14].
This RA gradient directly patterns PD identity through regulation of Meis and Hox genes. High RA signaling activates proximal identity genes including Meis1 and Meis2, while low RA signaling in distal blastemas permits expression of distal Hox genes such as Hoxa13 [14]. Experimental manipulation of this gradientâeither through RA administration or CYP26 inhibitionâreprograms positional identity, resulting in duplication of proximal structures when distal blastemas are exposed to elevated RA signaling [14].
In the developing central nervous system, RA functions as a key regulator of hindbrain segmentation. The hindbrain becomes subdivided into rhombomeres (r1-r7), with each rhombomere acquiring a unique identity through combinatorial expression of Hox genes (Hox PG1-PG4) [11]. This "hindbrain Hox code" is directly regulated by RA signaling, which establishes the anterior expression boundaries of specific Hox genes.
The regulatory logic involves opposing gradients of RA and FGF signaling, with RA promoting anterior fates and FGF promoting posterior fates [11]. This antagonistic interaction creates a balance that positions Hox expression domains with remarkable precision. Disruption of RA signaling during hindbrain patterning leads to anterior shifts in Hox expression boundaries and consequent defects in cranial nerve organization and neural crest migration [11].
Diagram Title: RA Signaling Pathways Regulating Hox Genes and Morphology
Table 3: Key Research Reagents for RA-Hox Gene Studies
| Reagent/Category | Specific Examples | Research Application | Functional Role |
|---|---|---|---|
| RA Pathway Agonists | All-trans RA, 9-cis RA, AM580, TTNPB | Experimental RA signaling activation | Bind RARs to activate transcription of target genes |
| RA Pathway Antagonists | BMS493, LE135, AGN194310 | Inhibition of endogenous RA signaling | Competitive RAR antagonists for loss-of-function studies |
| CYP26 Inhibitors | Liarozole, R115866 | Increase endogenous RA levels | Block RA degradation to elevate local RA concentrations |
| Synthesis Enzymes | RALDH2 (ALDH1A2) | RA biosynthesis studies | Catalyzes retinaldehyde to RA conversion |
| Detection Methods in situ hybridization, RARE-luciferase reporters, Immunohistochemistry | Monitoring RA signaling activity and Hox expression | Visualization and quantification of pathway activity | |
| Animal Models | Xenopus, Rana, Axolotl, Mouse | In vivo functional studies | Model organisms with conserved RA-Hox pathways |
| Metconazole-d6 | Metconazole-d6|Deuterated Fungicide Standard|RUO | Bench Chemicals | |
| D-Fructose-18O-2 | D-Fructose-18O-2, MF:C6H12O6, MW:182.16 g/mol | Chemical Reagent | Bench Chemicals |
The established role of retinoic acid as a potent modulator of Hox gene expression provides a robust experimental framework for investigating fundamental mechanisms of pattern formation in vertebrate development. The molecular tools and experimental protocols described herein enable precise manipulation of this pathway to investigate its roles in axial patterning, limb development, and neural patterning. In anuran models specifically, the ability of vitamin A to induce homeotic transformations offers unique insights into the evolutionary conservation and flexibility of these regulatory mechanisms.
Future research directions will likely focus on understanding how the RA-Hox pathway integrates with other signaling systems to generate complex morphological outcomes, and how this integration may have contributed to evolutionary diversification of body plans. The continued development of more specific pharmacological agents and genetic tools will further refine our ability to selectively manipulate components of this pathway, with potential applications in regenerative medicine and developmental disorder research.
The anuran model system, particularly Xenopus laevis and Rana species, provides a foundational platform for investigating the molecular underpinnings of limb regeneration and development. A central focus of modern research is the manipulation of Hox genesâkey transcription factors that confer positional identity along the body axesâusing vitamin A (retinoids). The core premise is that Hox genes re-establish the embryonic "positional address" of cells in a regenerating tissue, and that this process can be experimentally controlled via retinoid signaling to redirect regenerative outcomes [6] [16] [17].
Recent studies have yielded several critical insights that form the basis for the protocols herein:
This protocol describes a method to transform tail regeneration into limb formation through vitamin A administration, based on the work of Morioka et al. (2025) [6].
| Item | Function/Explanation |
|---|---|
| Rana ornativentris tadpoles | Anuran model species known to exhibit homeotic transformation upon vitamin A treatment. |
| Vitamin A (Retinoic Acid) | Active morphogen; respecifies positional information in regenerating tissue. |
| Ethanol or DMSO | Vehicle for dissolving lipophilic vitamin A compounds. |
| Tank water (e.g., 10% MBSH) | Standard medium for housing and treating anuran tadpoles. |
| Microsurgical Blades | For precise tail amputation. |
This protocol outlines loss-of-function and gain-of-function approaches to probe the role of specific Hox genes, such as Hoxc12 and Hoxc13, in Xenopus limb regeneration [18].
| Item | Function/Explanation |
|---|---|
| Adult or Froglet Xenopus laevis | Model organism with age-dependent, limited regenerative capacity. |
| CRISPR-Cas9 Genome Editing System | For targeted knockout of specific Hox genes (e.g., hoxc12, hoxc13). |
| Transgene Constructs (e.g., Hoxc12/13) | For inducible overexpression of Hox genes in the regenerating limb. |
| Wearable Bioreactor (BioDome) | Seals the amputation site, creating a controlled microenvironment for drug delivery [19]. |
| Multidrug Cocktail (e.g., in silk hydrogel) | Contains compounds to modulate inflammation, nerve sparing, and growth; delivered via BioDome [19]. |
Table 1: Key Quantitative Findings from Anuran Regeneration Studies
| Experimental Model / Treatment | Key Quantitative Outcome | Molecular / Functional Change |
|---|---|---|
| Vitamin A treatment in R. ornativentris [6] | Induction of ectopic limbs in tail regenerates. | Downregulation of posterior Hox genes precedes upregulation of pitx1. |
| Hoxc12/c13 knockout in Xenopus larvae [18] | Failure of autopod regeneration. | Inhibited cell proliferation; disrupted expression of essential developmental genes. |
| Hoxc12/c13 induction in Xenopus froglets [18] | Partial restoration of regenerative capacity. | Enhanced distal cartilage branching and nerve formation. |
| 24-hr Multidrug Cocktail + BioDome in adult Xenopus [19] | Long-term (18-month) regrowth of patterned limb with restored function. | Transcriptomic activation of Wnt/β-catenin, TGF-β, hedgehog, and Notch pathways. |
The following diagram integrates the core signaling pathways and logical relationships involved in vitamin A-mediated manipulation of Hox genes and regeneration in anuran models.
Within the field of evolutionary developmental biology, the vitamin A-induced homeotic transformation of regenerating tail tissue into limbs in anuran amphibians represents a pivotal discovery for understanding the manipulation of body patterning. This phenomenon demonstrates that the identity of a regenerating appendage can be completely respecified at the axial level through targeted molecular interventions. The transformation occurs via retinoic acid (RA) signaling, the active metabolite of vitamin A, which acts as a powerful morphogen to reprogram gene expression patterns in regenerating tissues [20].
The molecular cascade begins with downregulation of posterior Hox genes in the regenerating tail blastema following vitamin A administration [6]. This altered Hox expression profile precedes the subsequent activation of the hindlimb developmental program, suggesting Hox genes sit upstream in the regulatory hierarchy. Specifically, the reduction of posterior Hox genes removes inhibitory constraints on limb patterning pathways, allowing for the expression of key limb identity genes.
Following Hox gene repression, the hindlimb determinant Pitx1 becomes significantly upregulated [6]. Pitx1 is a transcription factor essential for normal hindlimb identity and development. Its activation initiates a cascade of limb-specific signaling events, ultimately leading to the formation of ectopic limb structures complete with characteristic skeletal elements, rather than the tail structures that would normally regenerate. This molecular pathwayâfrom vitamin A administration to Hox downregulation to Pitx1 activationâprovides a manipulable system for studying the fundamental mechanisms of axial patterning and cell fate specification.
Table 1: Key Gene Expression Changes During Homeotic Transformation
| Developmental Stage | Hox Genes (Posterior) | Pitx1 | Tbx5/Tbx4 | Observed Morphological Outcome |
|---|---|---|---|---|
| Normal tail regeneration | Maintained | Not expressed | Not expressed | Regeneration of tail structures |
| Early post-Vitamin A | Downregulated | Not expressed | Not expressed | Blastema formation without identity |
| Mid post-Vitamin A | Suppressed | Upregulated | Activated based on limb type | Initiation of limb bud development |
| Late post-Vitamin A | Suppressed | Highly expressed | Maintained | Formation of ectopic limb structures |
The homeotic transformation process involves complex interactions between multiple signaling pathways and gene regulatory networks. The core pathway can be visualized as a hierarchical genetic cascade, with retinoic acid signaling at the apex, followed by Hox gene repression, and culminating in the activation of the limb developmental program.
Diagram 1: Molecular pathway of vitamin A-induced transformation
Beyond this core cascade, the transformation involves additional regulatory components that determine limb type specificity. In the hindlimb pathway, Pitx1 activates Tbx4, which in turn initiates expression of Fgf10 in the mesenchyme [21]. This establishes a positive feedback loop with the apical ectodermal ridge (AER), a critical signaling center essential for limb outgrowth. The coordinated activity of these genes drives the formation of complete hindlimb structures with appropriate proximal-distal patterning.
The role of CYP26 enzymes is particularly crucial as regulatory checkpoints [20]. These cytochrome P450 enzymes metabolize and inactivate retinoic acid, thereby creating boundaries that limit its spatial distribution. This enzymatic activity ensures that RA signaling remains localized and temporally controlled, preventing ectopic activation of limb programs outside the intended regeneration field. The balance between RA synthesis and degradation thus represents a critical control point that can be experimentally manipulated to optimize transformation efficiency.
This protocol details the methodology for inducing homeotic transformation in anuran tadpoles through controlled vitamin A administration, with specific parameters optimized for Rana ornativentris based on published research [6].
Materials Required:
Procedure:
Vitamin A Solution Preparation:
Treatment Administration:
Dose-Response Analysis:
Table 2: Quantitative Transformation Outcomes by RA Concentration
| RA Concentration (μM) | Transformation Frequency (%) | Time to Bud Appearance (Days) | Morphology Score (1-5) | Survival Rate (%) |
|---|---|---|---|---|
| Vehicle Control | 0 | N/A | 1.0 ± 0.0 | 95 |
| 1 | 15 ± 4 | 12.5 ± 1.2 | 1.8 ± 0.3 | 90 |
| 10 | 62 ± 7 | 9.2 ± 0.8 | 3.5 ± 0.4 | 85 |
| 50 | 78 ± 6 | 7.8 ± 0.6 | 4.2 ± 0.3 | 75 |
| 100 | 45 ± 8 | 10.5 ± 1.1 | 2.8 ± 0.5 | 60 |
This protocol describes the quantification of gene expression changes during the homeotic transformation process, with particular focus on Hox genes and limb patterning markers.
Materials Required:
Procedure:
RNA Extraction and cDNA Synthesis:
Quantitative PCR Analysis:
Expected Expression Patterns:
The experimental workflow for the complete analysis from induction to molecular characterization is systematic and sequential:
Diagram 2: Experimental workflow for homeotic transformation studies
This section details critical reagents and their specific applications in studying vitamin A-induced homeotic transformations, providing researchers with a practical resource for experimental design.
Table 3: Research Reagent Solutions for Homeotic Transformation Studies
| Reagent/Category | Specific Examples | Function in Research | Application Notes |
|---|---|---|---|
| Vitamin A Compounds | All-trans retinoic acid, Retinol palmitate | Induces homeotic transformation | Light-sensitive; dissolve in DMSO; optimal concentration 10-50 μM |
| Molecular Inhibitors | DEAB, Citral | Inhibits RA biosynthesis; establishes necessity | Use for control experiments; validate efficacy |
| Gene Expression Tools | qPCR primers for Hox, Pitx1, Tbx genes | Quantifies expression changes during transformation | Normalize to reference genes; establish temporal kinetics |
| Animal Models | Rana ornativentris, Xenopus laevis | Provide regeneration-competent system | Species-specific response variations; consider temperature requirements |
| Histological Reagents | RNA preservation solutions, sectioning materials | Preserves tissue architecture and RNA integrity | Snap-freeze in liquid Nâ for RNA work; fix for histology |
| Hsp90-IN-21 | Hsp90-IN-21, MF:C24H22ClN3O2, MW:419.9 g/mol | Chemical Reagent | Bench Chemicals |
| H-Gly-Arg-NH2 | H-Gly-Arg-NH2, MF:C8H18N6O2, MW:230.27 g/mol | Chemical Reagent | Bench Chemicals |
Successful implementation of these protocols requires attention to several technical considerations. Temporal precision is critical when administering RA treatments, as the competence of regenerating cells to respond to patterning signals occurs within a narrow window following amputation [6]. Delivery method alternatives including bead implantation or localized application may enhance specificity and reduce systemic effects.
For molecular analyses, sample purity is essential when extracting RNA from regenerating blastemas. Contamination with non-blastemal tissues can significantly alter gene expression profiles. Microdissection skill and rapid processing help maintain sample integrity. When designing qPCR experiments, include validation experiments for primer specificity and amplification efficiency, particularly for anuran species where genomic resources may be limited.
The choice of animal model system involves important trade-offs. While Rana ornativentris shows robust transformation responses [6], Xenopus laevis offers superior genomic resources and genetic manipulation tools [22]. Researchers should select species based on their specific research questions and technical capabilities, considering that response to vitamin A can vary significantly between species.
The experimental paradigm of vitamin A-induced homeotic transformation provides powerful insights into the fundamental mechanisms of embryonic patterning and evolutionary morphology. From a biomedical perspective, understanding how vitamin A reprograms cell fate through Hox gene regulation offers potential strategies for regenerative medicine approaches aimed at replacing damaged or lost limbs [21]. The molecular principles revealed in these studiesâparticularly the hierarchical relationship between Hox genes and limb patterning networksâmay inform future therapies for congenital limb disorders.
In evolutionary biology, this system demonstrates the remarkable plasticity of developmental programs and how relatively simple molecular perturbations can produce dramatic morphological changes [23]. The observation that distal limb elements show greater evolutionary lability than proximal structures aligns with the finding that later-developing bones are under reduced constraint, providing a developmental framework for interpreting patterns of morphological diversity across tetrapods [23].
The role of vitamin A in this transformative process extends beyond limb development to its fundamental functions in nervous system patterning and axial specification [24] [22]. This highlights the pleiotropic nature of retinoid signaling and its central position in coordinating multiple aspects of embryonic development. Further exploration of this system will continue to yield insights into the deep homology of patterning mechanisms across vertebrate taxa and the potential for manipulating these pathways for therapeutic benefit.
Within the field of regenerative biology and teratology, the ability to manipulate body patterning through chemical intervention provides a powerful tool for understanding fundamental developmental processes. Research utilizing anuran models has revealed a striking phenomenon: the administration of vitamin A (retinoids) can induce a homeotic transformation of regenerating tail tissue into ectopic limbs [6]. This process is governed by a precise molecular cascade, where the downregulation of posterior Hox genes serves as an upstream event, priming the tissue for subsequent activation of core limb bud genes [6]. This application note details the experimental protocols and molecular toolkit for investigating this cascade, providing a framework for researchers aiming to dissect the mechanisms of positional memory and cell fate reprogramming.
The molecular events underlying this transformation have been quantitatively mapped, revealing a specific sequence of gene expression changes. The following table summarizes the core quantitative findings from key studies on anuran and axolotl models.
Table 1: Key Quantitative Findings in Hox and Limb Gene Studies
| Experimental Model | Gene/Pathway | Key Quantitative Finding | Experimental Method | Citation |
|---|---|---|---|---|
| Rana ornativentris (Anuran) | Posterior Hox genes | Downregulation observed prior to ectopic limb bud appearance | Gene expression quantification | [6] |
| Rana ornativentris (Anuran) | pitx1 (hind limb gene) | Upregulation follows Hox gene downregulation | Gene expression quantification | [6] |
| Axolotl (Ambystoma mexicanum) | Hand2 | Fluorescence increased 5.9 ± 0.4-fold during regeneration | Hand2:EGFP knock-in, flow cytometry | [25] |
| Axolotl (Ambystoma mexicanum) | Hand2 vs. Shh (ZRS>TFP) | Hand2 increased 2.3 ± 0.2-fold before Shh onset | Fluorescent reporter timing | [25] |
| Mouse (Mus musculus) | Nr6a1 in Gdf11â/â; miR-196â/â | Escalating Nr6a1 expression correlated with +8 to +13 additional trunk vertebrae | Transcriptomic analysis | [26] |
This protocol is adapted from Morioka et al., detailing the method to induce ectopic limb formation in anuran tadpoles via vitamin A administration [6].
Application: To experimentally trigger homeotic transformation for studying Hox gene dynamics and limb patterning.
Materials:
Procedure:
Notes: The concentration and timing of vitamin A exposure are critical. High doses can be toxic, while low doses may not induce transformation. Always include vehicle-control (DMSO/ethanol in water) and amputation-only control groups.
This protocol outlines the method for quantifying the expression of Hox and limb genes in regenerating tissue.
Application: To quantitatively track the temporal sequence of gene downregulation (Hox) and upregulation (limb genes) during the transformation process.
Materials:
Procedure:
Notes: Primer design is critical. Ensure primers are exon-spanning to avoid amplification of genomic DNA. A standard curve or efficiency test should be performed for each primer set.
The molecular basis of this phenomenon involves the disruption of positional memory and the initiation of a limb bud signaling center. The following diagram integrates findings from anuran and axolotl models to illustrate the core signaling logic.
Diagram 1: Molecular cascade of vitamin A-induced ectopic limb formation. Vitamin A downregulates posterior Hox genes, which relieves repression on positional memory factors like Hand2. This primes and activates Shh expression, establishing a positive feedback loop with Fgf8 that drives limb bud gene expression and ectopic outgrowth. Based on [6] [25].
The overall experimental workflow, from animal model preparation to molecular analysis, is outlined below.
Diagram 2: Experimental workflow for investigating Hox gene dynamics. The process involves inducing regeneration with vitamin A, harvesting tissue at key time points, and correlating morphological changes with molecular data.
The following table catalogues essential reagents and their applications for studying this molecular cascade.
Table 2: Essential Research Reagents for Hox and Limb Gene Manipulation Studies
| Research Reagent | Function/Application | Example Use in Model Systems |
|---|---|---|
| Retinoic Acid (all-trans) | Bioactive vitamin A metabolite; teratogen used to manipulate Hox gene expression and induce homeotic transformations. | Induces ectopic limb formation in regenerating anuran tails [6] [27]. |
| Hox Gene Expression Vectors | For gain-of-function studies to test the sufficiency of specific Hox genes in maintaining positional identity. | Misexpression of Hoxd12 in chick limbs alters Shh expression and digit patterning [28]. |
| Anti-HOX Antibodies | Immunohistochemical detection and localization of HOX protein expression in tissue sections. | Critical for validating protein-level changes following retinoid treatment. |
| RNA Probes for In Situ Hybridization | Spatial localization of gene expression (e.g., Hox, Shh, pitx1) in whole-mount or sectioned regenerating tissue. | Used to map Hox and limb gene expression domains in axolotl and anuran limbs [6] [25]. |
| Shh Signaling Agonists/Antagonists | Pharmacological manipulation of the Shh pathway to test its necessity in the ectopic limb formation cascade. | Cyclopamine (antagonist) can inhibit Shh-dependent limb outgrowth. |
| siRNA / Morpholinos | Transient knockdown of target genes (e.g., Hand2, pitx1) to test their functional role in the molecular cascade. | Used in axolotls to dissect the Hand2-Shh feedback loop [25]. |
| Transgenic Reporter Lines (e.g., ZRS>TFP) | Visualizing the activity of specific gene regulatory elements (e.g., Shh enhancer) in real-time. | Axolotl ZRS>TFP line labels Shh-expressing cells during limb development and regeneration [25]. |
| Thyminose-13C | Thyminose-13C, MF:C5H10O4, MW:135.12 g/mol | Chemical Reagent |
| Antiviral agent 23 | Antiviral agent 23, MF:C18H21N5O4, MW:371.4 g/mol | Chemical Reagent |
This document provides detailed application notes and protocols for the experimental administration of vitamin A (retinoids) in anuran tadpoles. This methodology is central to a research thesis investigating the manipulation of Hox gene expression to induce homeotic transformations, such as the regeneration of limbs or eyes in place of tail tissue. Retinoic acid (RA), the active metabolite of vitamin A, acts as a powerful morphogen, altering the expression of key developmental genes and disrupting axial patterning [6] [29]. The protocols herein are designed for researchers, scientists, and drug development professionals working in the fields of developmental biology, regenerative medicine, and genetics.
The following tables summarize key quantitative findings from foundational studies in this field.
Table 1: Vitamin A-Induced Homeotic Transformation Frequencies
| Anuran Species | Tissue Target | Treatment Regimen | Phenotypic Outcome | Frequency of Effect | Citation |
|---|---|---|---|---|---|
| Rana ornativentris | Regenerating tail | Vitamin A administration | Ectopic limb formation | Observed, frequency not specified | [6] |
| Bufo melanostictus | Pineal organ (after eye removal) | Vitamin A treatment | Homeotic transformation to a median eye | 71% (vs. 57% in controls) | [29] |
Table 2: Molecular Outcomes of Retinoid Exposure in Vertebrate Models
| Experimental Model | Treatment | Key Molecular Outcomes | Measured Effect | Citation |
|---|---|---|---|---|
| Rana ornativentris (Anuran) | Vitamin A | Downregulation of posterior Hox genes; Upregulation of pitx1 | Precedes ectopic limb bud appearance | [6] |
| Human iPSCs & Zebrafish | RA and BPA coexposure | Potentiated expression of 3' HOX genes | Higher expression vs. RA alone | [30] |
| Human iPSCs & Zebrafish | RA alone (7.5-100 nM) | Dose-dependent increase in HOX gene expression | Measured via RT-qPCR and transcriptome analysis | [30] |
This protocol is adapted from studies on Rana species to generate ectopic limbs at the tail amputation site [6].
I. Materials
II. Procedure
III. Key Notes
This protocol outlines the method for quantifying changes in Hox gene expression following vitamin A treatment, as performed in studies like Morioka et al. [6] [30].
I. Materials
II. Procedure
The following diagrams illustrate the proposed molecular mechanism and experimental workflow.
Diagram 1: RA signaling perturbs Hox gene expression, leading to homeotic transformation. Based on [6] [30].
Diagram 2: Step-by-step workflow for administering vitamin A and analyzing outcomes in tadpoles.
Table 3: Essential Reagents for Vitamin A Administration Studies
| Reagent / Material | Function / Application | Example & Notes |
|---|---|---|
| all-trans Retinoic Acid | The primary active form of vitamin A used to perturb Hox gene expression and induce homeotic transformations. | Source: Sigma-Aldrich. Handle with care: light-sensitive and teratogenic. Prepare stock in DMSO and store at -25°C [30]. |
| Dimethyl Sulfoxide (DMSO) | Vehicle for dissolving retinoic acid and other hydrophobic compounds for aqueous administration. | Use high-purity, sterile-grade DMSO. Final concentration in tadpole water should typically be â¤0.1% to minimize toxicity [30]. |
| Retinoic Acid Receptor (RAR) Antagonists | Pharmacological tool to confirm the specificity of RA signaling. Antagonists block RAR and should abolish RA-induced Hox gene changes. | Examples: BMS493, BMS195614. Used in control experiments to validate mechanism of action [30]. |
| RNA Extraction & RT-qPCR Kits | For molecular analysis of gene expression changes (e.g., Hox genes, pitx1) in response to treatment. | Kits from Promega (ReliaPrep) and Takara Bio are cited. Critical for quantifying the molecular outcomes of the protocol [30]. |
| MS-222 (Tricaine) | Anesthetic for immobilizing tadpoles during surgical procedures like tail amputation. | Use a 0.1% solution buffered to neutral pH. Essential for humane and precise operation [6]. |
| Methoxyfenozide-d9 | Methoxyfenozide-d9, MF:C22H28N2O3, MW:377.5 g/mol | Chemical Reagent |
| ATM Inhibitor-9 | ATM Inhibitor-9|Potent ATM Kinase Inhibitor|RUO | ATM Inhibitor-9 is a potent, selective ATM kinase inhibitor (IC50=5 nM) for cancer research. For Research Use Only. Not for human consumption. |
Within developmental biology and regenerative medicine, the ability to fundamentally alter the identity of a regenerating tissue represents a paradigm shift. Research using anuran tadpoles has demonstrated a remarkable phenomenon: the administration of vitamin A can subvert the typical tail regeneration process, leading to the formation of ectopic limbs instead [31]. This homeotic transformation, a change in the developmental fate of the tail blastema from tail-specific to limb-specific structures, provides a powerful model for studying the manipulation of positional information. This Application Note details the protocols for inducing, monitoring, and staging this process, with a specific focus on the underlying manipulation of Hox gene expression, which is central to this morphological reprogramming [6].
In standard conditions, anuran tadpoles regenerate their tails following amputation. However, when exposed to vitamin A (retinoic acid), the regenerative pathway is redirected [31]. Molecular analyses in species like Rana ornativentris indicate that this is not merely an anomaly but a coordinated homeotic transformation, where the tail blastema's positional information is rewritten to that of a trunk location, permitting limb development [6] [31].
The molecular cascade begins with retinoic acid (RA) signaling. RA enters the nucleus and binds to retinoic acid receptors (RARs) which heterodimerize with retinoid X receptors (RXRs). This complex then binds to Retinoic Acid Response Elements (RAREs) located in the regulatory regions of target genes [32]. A key group of these target genes are the Hox genes, which encode transcription factors that establish axial identity and patterning during embryonic development [6] [32]. In the context of tail regeneration, vitamin A administration leads to the downregulation of posterior Hox genes [6]. This shift in Hox code is a critical early event that precedes the activation of the limb developmental program. The altered Hox expression ultimately acts upstream to induce key limb identity genes, such as pitx1, a transcription factor critical for hind limb specification [6]. The accompanying diagram illustrates this proposed signaling pathway.
The homeotic transformation is characterized by distinct morphological changes underpinned by specific molecular events. The quantitative data from Morioka et al. (2025) is summarized in the table below [6].
Table 1: Key molecular events during homeotic transformation induced by vitamin A.
| Developmental Stage | Key Molecular Event | Quantitative Change | Technical Assay | Biological Significance |
|---|---|---|---|---|
| Early (Pre-bud) | Downregulation of posterior hox genes |
Significant decrease vs. control | qRT-PCR | Alters axial identity of blastema; prerequisite for limb fate |
| Early (Pre-bud) | Upregulation of pitx1 |
Significant increase vs. control | qRT-PCR | Specifies hind limb identity; initiated by hox change |
| Mid (Bud) | Onset of tbx5/tbx4 expression |
Presence detected | In situ hybridization | Specifies forelimb (tbx5)/hindlimb (tbx4) identity |
| Late (Palette) | Expression of fgf8, shh |
Presence detected | In situ hybridization | Activates signaling pathways for limb outgrowth & patterning |
This protocol is adapted from established models in Rana ornativentris [6] [31].
Table 2: Essential research reagents for inducing and analyzing homeotic transformation.
| Category | Item | Function / Specification | Example / Note |
|---|---|---|---|
| Biological Model | Anuran Tadpoles | Rana ornativentris, Xenopus laevis | Stage: pre-limb bud, during tail regeneration competence. |
| Inducing Agent | all-trans Retinoic Acid (RA) | Active form of Vitamin A | Prepare stock solution in DMSO; dilute in tank water. Light-sensitive. |
| Molecular Biology | qRT-PCR Reagents | Quantitative gene expression analysis | Primers for posterior hox genes, pitx1, tbx4, housekeeping genes. |
| In situ Hybridization Kit | Spatial localization of RNA | Digoxigenin-labeled riboprobes for pitx1, shh, fgf8. |
|
| Histology | Fixative | Tissue preservation | 4% Paraformaldehyde (PFA) in PBS. |
| Embedding Medium | For sectioning | Paraffin or Optimal Cutting Temperature (OCT) compound. | |
| Controls | Vehicle Control | 0.1% DMSO in tank water | Controls for solvent effects. |
Part A: Induction of Homeotic Transformation
Part B: Staging the Transformation Process
The transformation can be staged morphologically and molecularly as follows. The experimental workflow for the entire protocol is visualized below.
Stage 1: Wound Healing (Days 0-2 Post-Amputation)
Stage 2: Homeotic Blastema Formation (Days 3-7)
pitx1 is typically detected via qRT-PCR, following the Hox gene downregulation. This confirms the initiation of a hind limb developmental program [6].Stage 3: Limb Bud Formation (Days 7-14)
shh (in the ZPA) and fgf8 (in the AER) within the ectopic bud.Stage 4: Patterned Ectopic Limb (Days 14+)
Table 3: Key reagents and tools for studying homeotic transformation.
| Tool / Reagent | Function in Research | Application Note |
|---|---|---|
| all-trans Retinoic Acid | Induces homeotic transformation by altering Hox gene expression. | Critical to optimize concentration and exposure time for specific anuran species [6] [31]. |
| Hox Gene Primers (qPCR) | Quantifies changes in axial patterning genes. | Focus on posterior Hox genes (e.g., Hoxc10, Hoxc11) as early molecular markers [6]. |
| pitx1 Riboprobe (ISH) | Labels cells committing to hind limb fate. | A key downstream target; its expression confirms the limb identity switch [6]. |
| RNA Biosensors (e.g., Mango, Broccoli) | Live imaging of RNA dynamics in real-time. | Emerging tool to monitor gene expression (e.g., pitx1 mRNA) without fixation, enabling live tracking of transformation [33]. |
| Alcian Blue & Alizarin Red | Stains cartilage and bone in differentiated structures. | Used to validate the final outcome by revealing the patterned skeletal elements of the ectopic limb [31]. |
| Antituberculosis agent-6 | Antituberculosis agent-6 | Antituberculosis agent-6 is a potent antimycobacterial compound for research. This product is For Research Use Only, not for human consumption. |
| Irak4-IN-26 | Irak4-IN-26, MF:C22H23N5O3, MW:405.4 g/mol | Chemical Reagent |
The protocol for monitoring and staging the vitamin A-induced homeotic transformation of tails into limbs provides a robust experimental framework for investigating the fundamental principles of cell fate and positional information. The cornerstone of this phenomenon is the retinoic acid-driven manipulation of Hox gene expression, which acts as a master switch to reprogram the developmental trajectory of the regenerating tail blastema [6] [32]. By integrating precise morphological staging with targeted molecular analyses of key genes like hox and pitx1, researchers can systematically dissect the mechanisms that enable such profound changes in tissue identity. This model system continues to offer invaluable insights with potential implications for regenerative medicine, evolutionary developmental biology, and the understanding of how signaling molecules like retinoids can orchestrate large-scale morphological changes.
The precise quantification of Hox gene expression is fundamental to developmental biology research, particularly in studies investigating the homeotic transformation of tails into limbs induced by vitamin A in anuran models [6]. In these studies, molecular tools such as qPCR and in situ hybridization are indispensable for detecting changes in gene expression that underlie dramatic morphological alterations [6]. This protocol details the application of these key molecular techniques within the context of vitamin A research, enabling researchers to reliably quantify expression dynamics of Hox genes and related limb development genes during ectopic limb formation.
The selection of appropriate molecular tools depends on the research question, whether it requires spatial resolution, precise quantification, or genome-wide expression profiling.
Table: Key Molecular Tools for Quantifying Hox Gene Expression
| Method | Key Application | Resolution | Throughput | Key Output |
|---|---|---|---|---|
| qPCR | Precise quantification of transcript levels for specific Hox genes [34] | Bulk tissue or cell population | Medium | Expression fold changes |
| In Situ Hybridization | Spatial localization of Hox mRNA within tissue sections [5] | Tissue/cellular | Low | Spatial expression patterns |
| RNA Sequencing | Unbiased profiling of all Hox transcripts and related genes [2] | Single-cell to bulk tissue | High | Genome-wide expression data |
| In Situ Sequencing | Spatial mapping of multiple Hox genes simultaneously [2] | Single-cell | High | Spatial transcriptomics data |
qPCR enables precise quantification of specific Hox gene transcript levels in tissue samples through reverse transcription of RNA to cDNA, followed by PCR amplification with fluorescent probes [34]. This method is ideal for tracking expression changes of specific Hox genes, such as the downregulation of posterior Hox genes prior to ectopic limb bud appearance in vitamin A-treated anurans [6].
RNA Extraction
cDNA Synthesis
qPCR Reaction
Data Analysis
Figure: qPCR Workflow for Hox Gene Analysis
In situ hybridization enables precise spatial localization of Hox mRNA transcripts within tissue sections, preserving anatomical context [5]. This is particularly valuable for understanding regional Hox code patterns during vitamin A-induced transformations.
Probe Synthesis
Tissue Preparation
Hybridization
Detection
When investigating homeotic transformation of tails into limbs induced by vitamin A in anuran species such as Rana ornativentris, molecular quantification of Hox gene expression should be strategically timed [6]:
Table: Key Gene Targets in Vitamin A-Induced Homeotic Transformation
| Gene Category | Specific Targets | Expected Expression Change | Biological Significance |
|---|---|---|---|
| Posterior Hox Genes | Hoxa11, Hoxa13, Hoxd10-Hoxd13 | Downregulation prior to ectopic limb bud appearance [6] | Loss of tail identity |
| Hind Limb Genes | Pitx1, Tbx4 | Upregulated following Hox changes [6] | Establishment of hind limb program |
| TGF-β Signaling | GDF11, Smad2, Smad4 | Altered phosphorylation and activity [5] | Regulation of posterior Hox genes |
Vitamin A (retinoic acid) influences Hox gene expression through complex signaling interactions. Understanding these pathways is essential for interpreting experimental results.
Figure: Hox Gene Regulation by Vitamin A and Signaling Pathways
Table: Essential Reagents for Hox Gene Expression Studies
| Reagent Category | Specific Products | Application Notes |
|---|---|---|
| RNA Isolation | TRIzol Reagent, RNeasy Mini Kit | For high-quality RNA from anuran tissues rich in pigments and connective tissue |
| cDNA Synthesis | High-Capacity cDNA Reverse Transcription Kit | Use with random hexamers and oligo(dT) primers for comprehensive coverage |
| qPCR Reagents | SYBR Green Master Mix, TaqMan Gene Expression Assays | SYBR Green requires careful primer optimization; TaqMan offers higher specificity |
| In Situ Probes | DIG RNA Labeling Kit, Fluorescent in situ hybridization kits | DIG system provides excellent sensitivity for detecting low-abundance Hox transcripts |
| Antibodies | Anti-DIG-AP, Phospho-Smad2 antibodies | Essential for detecting in situ hybridization signals and signaling activity [5] |
| Vitamin A Reagents | All-trans retinoic acid, Retinol | Prepare fresh solutions and use appropriate vehicle controls in anuran studies |
Understanding the initiation of limb-specific gene programs is fundamental to developmental biology and regenerative medicine. The transcription factor Pitx1 serves as a key determinant of hindlimb identity, and its ectopic expression is sufficient to induce a partial arm-to-leg transformation, as observed in Liebenberg syndrome [35]. Recent research demonstrates that the severity of such transformations is directly correlated with the proportion of cells ectopically expressing Pitx1, which is governed by the 3D topology of its locus and the activity of its enhancers [35]. Furthermore, studies in anuran models reveal that the manipulation of Hox gene expression using Vitamin A can precede and potentially induce the upregulation of Pitx1, leading to homeotic transformations where tails regenerate as limbs [6]. This provides a powerful experimental framework for investigating the genetic hierarchy governing limb identity. The following notes and protocols detail methods for quantifying and manipulating the onset of these critical gene programs.
Table 1: Impact of Genetic Perturbations on Pitx1 Ectopic Expression in Mouse Forelimbs
| Genetic Allele / Perturbation | Description / Mechanism | Pitx1-Enhancer Pen Distance | Percentage of EGFP+ Cells in Forelimb (E12.5) |
|---|---|---|---|
| Pitx1EGFP; Inv1 | Inversion placing Pen at RA4 location (~225 kb from Pitx1) [35] | ~225 kb | 6.4% [35] |
| Pitx1EGFP; Inv2 | Larger inversion placing Pen at PDE location (~116 kb from Pitx1) [35] | ~116 kb | 27% [35] |
| Pitx1EGFP; ÎPen; Rel1 | Relocation of Pen to RA4 site in ÎPen background [35] | ~225 kb | 2% [35] |
| Pitx1EGFP; ÎPen; Rel2 | Relocation of Pen to PDE site in ÎPen background [35] | ~116 kb | 59% [35] |
| Pitx1EGFP; ÎPen; Rel3 | Relocation of Pen 7.7 kb upstream of Pitx1 [35] | ~10.5 kb | Data not explicitly stated in provided results |
Table 2: Key Gene Expression Changes in Anuran Tail-to-Limb Transformation
| Experimental Model | Intervention | Key Genetic Findings | Proposed Genetic Hierarchy |
|---|---|---|---|
| Rana ornativentris Tadpole | Vitamin A administration post-tail amputation [6] | Downregulation of posterior Hox genes precedes upregulation of Pitx1 in regenerating tail blastema [6] | Vitamin A â Hox Gene Downregulation â Pitx1 Upregulation â Ectopic Limb Bud Formation [6] |
This protocol is adapted from methodologies used to analyze Pitx1 expression in engineered mouse models [35].
I. Purpose To isolate and quantify the proportion of cells ectopically expressing Pitx1 from developing limb tissues using a Pitx1EGFP reporter allele.
II. Materials
III. Procedure
IV. Analysis Compare the percentage of EGFP+ cells between control and experimental genotypes (e.g., those with structural variants or enhancer relocations) to assess the level of ectopic Pitx1 activation [35].
This protocol is based on research demonstrating homeotic transformation of tails into limbs using Vitamin A [6].
I. Purpose To induce ectopic limb formation in regenerating tadpole tails and analyze the subsequent gene expression changes, particularly in Hox genes and Pitx1.
II. Materials
III. Procedure
IV. Analysis Compare the expression levels of Hox genes and Pitx1 between Vitamin A-treated and control tadpoles. The expected result is a downregulation of posterior Hox genes followed by an upregulation of Pitx1 in the Vitamin A-treated group, preceding visible limb formation [6].
Table 3: Essential Reagents for Studying Limb-Specific Gene Programs
| Research Reagent | Function and Application |
|---|---|
| Pitx1EGFP Reporter Allele | A genetically engineered sensor that allows for the tracking, sorting, and quantification of Pitx1-expressing cells via EGFP fluorescence [35]. |
| All-trans-Retinoic Acid (Vitamin A) | A morphogen used in anuran and other models to manipulate Hox gene expression, inducing homeotic transformations and studying upstream regulators of Pitx1 [6]. |
| siRNA / CRISPR-Cas9 Systems | For targeted gene knockdown (e.g., Pitx1, Tbx4) or creation of structural variants (e.g., inversions, enhancer relocations) to study gene function and regulation [35] [36]. |
| qPCR Primers for Hox & Pitx1 Genes | Essential tools for quantifying temporal changes in gene expression during normal development or experimentally induced transformations [6]. |
| Collagenase/Dispase Enzymes | Used for the gentle dissociation of embryonic limb tissue into single-cell suspensions for downstream applications like FACS [35]. |
| Hdac6-IN-14 | Hdac6-IN-14, MF:C24H30FN3O4, MW:443.5 g/mol |
| Boc-Gln-Gly-Arg-AMC | Boc-Gln-Gly-Arg-AMC, MF:C28H40N8O8, MW:616.7 g/mol |
This application note details the molecular mechanisms and experimental protocols for inducing homeotic transformationsâspecifically, the reprogramming of tadpole tail tissue into limbsâthrough vitamin A (retinoic acid) modulation of Hox gene expression. In anuran models, this process demonstrates the profound impact of Hox-regulated positional identity on cell fate and tissue remodeling. The core principle is that vitamin A, acting through retinoic acid signaling, can repattern the Hox code, a specific pattern of Hox gene expression that defines anatomical position along the anterior-posterior axis [37] [6]. This shift in the Hox code downstream leads to the activation of limb-specific genetic programs in a tissue normally fated to form a tail, resulting in a homeotic transformation [6]. The following sections provide a quantitative summary of the key molecular events, detailed methodologies for reproducing this phenomenon, and a visualization of the underlying signaling pathway.
The following table summarizes the core quantitative findings and temporal sequence of molecular events during the vitamin A-induced homeotic transformation of tail to limb in Rana ornativentris.
Table 1: Key Molecular Events in Vitamin A-Induced Homeotic Transformation
| Molecular Event | Experimental Model | Key Finding | Timing/Measurement |
|---|---|---|---|
| Hox Gene Downregulation | Rana ornativentris (Anuran) | Downregulation of a posterior Hox gene precedes ectopic limb bud appearance [6]. | Occurs prior to morphological changes and pitx1 upregulation. |
| Limb Gene Activation | Rana ornativentris (Anuran) | Subsequent upregulation of pitx1, a key hind limb identity gene [6]. | Follows the initial shift in Hox gene expression. |
| Proliferation Regulation | Drosophila CNS | The Hox gene abdA slows neural stem cell (NSC) growth, lengthens G2 phase, and delays mitosis in abdominal segments [38]. | Abdominal NSCs are smaller, divide slower; loss of abdA increases their size and division rate. |
| Prolonged Proliferation | C. elegans vulval cells | Constitutive expression of the Hox gene lin-39 prolongs the proliferative phase of somatic cells past their normal arrest point [39]. | Vulval cell proliferation extends beyond the normal endpoint of the cell lineage. |
This protocol is adapted from Morioka et al., detailing the method for inducing ectopic limb formation in regenerating Rana ornativentris tadpole tails through vitamin A administration [6].
Objective: To investigate the molecular mechanisms of Hox-mediated tissue remodeling by inducing homeotic transformation.
Materials:
Method:
Vitamin A Administration:
Phenotypic Analysis:
Molecular Analysis of Hox and Limb Genes:
Troubleshooting:
This protocol outlines a method for validating the necessity of Hox genes for sustaining cell proliferation, as demonstrated in C. elegans [39].
Objective: To test if Hox gene function is required to maintain proliferation in specified cell lineages.
Materials:
Method:
Table 2: Essential Research Reagents for Hox Manipulation Studies
| Reagent / Material | Function / Application | Example Use Case |
|---|---|---|
| All-trans Retinoic Acid (RA) | A bioactive form of Vitamin A; acts as a morphogen to perturb the Hox code and induce homeotic transformations [6]. | Inducing tail-to-limb transformation in anuran tadpoles. |
| Hox Reporter Strains | Transgenic organisms with Hox genes tagged with fluorescent proteins (e.g., GFP) to visualize expression dynamics in live tissues [39]. | Monitoring LIN-39::GFP expression in dividing C. elegans vulval cells. |
| Conditional Knockdown Systems | Tools for spatially and temporally controlled gene inactivation (e.g., ZIF-1 degradation, RNAi, Cre-lox) [39]. | Testing the necessity of a Hox gene for proliferation after cell fate specification. |
| Hox-Specific Antibodies | Antibodies for immunohistochemistry (IHC) and Western Blot to detect Hox protein localization and levels. | Validating Hox protein expression patterns in tissue sections. |
| Spatial Transcriptomics | High-resolution mRNA assays (Visium, in-situ sequencing) to map the Hox code across cell types in a tissue [2]. | Creating an atlas of HOX gene expression in the developing human spine. |
| Fgfr-IN-11 | FGFR-IN-11|Potent FGFR Inhibitor|Research Compound | FGFR-IN-11 is a potent, selective FGFR inhibitor for cancer research. It targets tyrosine kinase activity to suppress cell proliferation. For Research Use Only. Not for human or veterinary use. |
| HIV-1 integrase inhibitor 10 | HIV-1 integrase inhibitor 10, MF:C40H45N7O4, MW:687.8 g/mol | Chemical Reagent |
Retinoic acid (RA), the active metabolite of Vitamin A, serves as a critical signaling molecule in vertebrate embryonic development. Its function is fundamentally dualistic: precise spatial and temporal regulation is required for normal head and tail formation, whereas dysregulation leads to severe teratogenic effects. This duality is central to its role in patterning the anterior-posterior (A-P) axis, largely through the precise regulation of Hox gene expression [12]. In anuran models like Xenopus, RA signaling operates as a key modifier of developmental processes, making it a powerful experimental tool for investigating the principles of axial patterning. This document outlines the application of RA in manipulating Hox gene expression, providing detailed protocols and data frameworks for researchers in developmental biology and drug discovery.
The teratogenic effects of RA are concentration-dependent and associated with specific developmental windows. The following tables summarize quantitative data from zebrafish and model system studies, providing a reference for experimental design.
Table 1: Concentration-Dependent Teratogenic Effects of All-Trans Retinoic Acid (ATRA) in Zebrafish
| Teratogenic Effect | Most Sensitive Window (hpf) | EC50 (µg/L) | Key Observations |
|---|---|---|---|
| Tail Malformation (TM) | 4 - 48 | 0.20 - 0.26 | Most sensitive indicator of RA disruption [40] |
| Craniofacial Malformation (CFM) | 4 - 48 | ~1.00 - 1.21 | Shares sensitivity window with posterior swim bladder [40] |
| Posterior Swim Bladder Non-inflation | 4 - 48 | ~1.00 - 1.21 | Often co-occurs with craniofacial defects [40] |
Table 2: Consequences of RA Signaling Disruption in Model Organisms
| Condition | Model System | Major Phenotypic Outcomes |
|---|---|---|
| Reduced RA Signaling | Xenopus | Microcephaly, head truncation, failure of prechordal mesoderm migration [41] |
| Excess RA Signaling | Mouse/Zebrafish | Hindbrain expansion, tail malformations, homeotic transformations of vertebrae [41] [40] [8] |
| Embryonic Alcohol Exposure (Reduced RA) | Xenopus | FAS-like phenotypes, including microcephaly, due to competition for RA-biosynthetic enzymes [41] |
This protocol is designed to investigate the dual role of RA in head and tail development by altering Hox gene expression domains.
I. Materials and Reagents
II. Procedure
III. Analysis and Validation
Accurately measuring endogenous RA levels is crucial for validating experimental manipulations.
I. Materials and Reagents
II. Procedure
III. Advanced Method for Isomer Separation
The following diagram illustrates the core pathway of RA biosynthesis and its mechanism of action in regulating target genes like Hox and Cdx1.
This workflow outlines the key steps from hypothesis testing to data analysis in an RA manipulation experiment.
Table 3: Key Reagent Solutions for RA Signaling Research in Anuran Models
| Reagent / Solution | Function & Application in Research |
|---|---|
| all-trans Retinoic Acid (ATRA) | The primary endogenous bioactive retinoid. Used to experimentally elevate RA signaling and induce teratogenic or patterning effects [40] [20]. |
| DEAB (Diethylaminobenzaldehyde) | A specific inhibitor of retinaldehyde dehydrogenases (RALDHs). Used to block endogenous RA synthesis and model reduced RA signaling [41]. |
| RALDH2/RALDH3 Morpholinos or CRISPR/Cas9 | Gene-specific knockdown/knockout tools to target RA biosynthesis in specific embryonic territories (e.g., organizer) and study loss-of-function phenotypes [41]. |
| Retinoid Receptor Antagonists (e.g., BMS493) | Pan-antagonist of retinoic acid receptors (RARs). Used to block RA signaling downstream, confirming the specificity of RA-mediated effects [8]. |
| Hox Gene Probes | Labeled RNA probes for in situ hybridization. Essential for visualizing the anterior-posterior shifts in Hox gene expression domains upon RA manipulation [8] [12]. |
| LC-MS/MS with DMS | The gold-standard methodology for the sensitive, specific, and quantitative measurement of endogenous RA and its isomers from limited biological samples like embryonic tissue [42] [43]. |
The ability to manipulate embryonic development to achieve specific phenotypic outcomes is a powerful tool in developmental biology. Research using anuran models (frogs and toads) has demonstrated that administration of vitamin A (retinoids) can induce dramatic homeotic transformations, such as the formation of ectopic limbs in regenerating tadpole tails instead of a normal tail regenerate [6]. This phenomenon is driven by the ability of retinoids to profoundly alter the expression of Hox genes, key transcriptional regulators of body patterning [6] [32]. This application note provides a detailed protocol for leveraging this effect, framing the methodology within the broader context of manipulating Hox gene expression to control developmental outcomes. It is designed to assist researchers and drug development professionals in reproducing and adapting this technique for specific experimental goals.
Retinoic Acid (RA), the active derivative of Vitamin A, functions as a powerful signaling molecule during embryogenesis. It directly influences the expression of Hox genes by binding to Retinoic Acid Receptors (RARs) and Retinoid X Receptors (RXRs). This complex then binds to specific DNA sequences known as Retinoic Acid Response Elements (RAREs) located in the regulatory regions of Hox genes [32].
For instance, enhancers containing a DR5-type RARE have been identified at the 3' end of both the Hoxa and Hoxb gene clusters. These RAREs are responsible for driving the RA-responsive expression of genes like Hoxa-1 and Hoxb-1 [32]. In the context of anuran tadpole tail regeneration, Vitamin A administration leads to the downregulation of posterior Hox genes prior to the appearance of ectopic limb buds. This shift in Hox expression is a critical upstream event that precedes the activation of limb-specific genes such as pitx1, a key determinant of hind limb identity [6]. The proposed signaling pathway is summarized below.
Achieving a specific phenotype is highly dependent on precise dosing and timing. The following table consolidates key quantitative data from foundational research to guide experimental design.
Table 1: Optimized Dosage and Timing Parameters for Phenotype Induction in Anuran Models
| Phenotypic Outcome | Recommended Compound | Effective Concentration | Critical Treatment Window | Key Molecular Hallmarks |
|---|---|---|---|---|
| Ectopic Hind Limb Formation in regenerating tail tissue [6] | Vitamin A (Retinoic Acid) | Species-specific optimization required | Immediately following tail amputation, prior to bud stage regeneration [6] | 1. Downregulation of posterior Hox genes [6]2. Subsequent upregulation of pitx1 [6] |
The following protocol is adapted from established methodologies in anuran and Xenopus research, focusing on the key steps for inducing and analyzing homeotic transformations.
To confirm the molecular mechanism, analyze gene expression changes in the regenerating tissue.
The entire experimental workflow, from animal handling to molecular analysis, is depicted below.
Table 2: Essential Reagents for Hox Gene Manipulation via Vitamin A
| Research Reagent | Function / Application | Key Considerations |
|---|---|---|
| All-trans Retinoic Acid (RA) | The active Vitamin A metabolite; directly binds to RAR/RXR receptors to alter Hox gene expression [6] [32]. | Light-sensitive; requires DMSO for stock solutions. Dosage is critical and species-specific. |
| Human Chorionic Gonadotropin (HCG) | Hormone used to induce natural mating in anurans for consistent embryo production [44]. | Allows for timed collection of embryos at specific developmental stages. |
| Anuran Models (e.g., Rana ornativentris, Xenopus laevis) | Classic model organisms for studying vertebrate development and regeneration [6] [44]. | Exhibit robust regenerative capabilities and are responsive to retinoid-induced homeotic transformations. |
| Calcium Imaging Indicators (e.g., GCaMP, NCaMP7) | Genetically encoded sensors for visualizing intracellular calcium dynamics [45]. | Can be repurposed to study calcium signaling roles in downstream processes of differentiation and patterning. |
| Fluorescence In Situ Hybridization (FISH) Kits | Allow for spatial localization of specific mRNA transcripts (e.g., Hox genes, pitx1) in fixed tissue samples [44]. | Validates changes in gene expression within the context of tissue morphology and ectopic structures. |
The targeted manipulation of Hox gene expression using Vitamin A in anuran models provides a robust and inducible system for studying fundamental principles of body patterning, regeneration, and gene regulation. The precise phenotypic outcome is a direct function of dosage and developmental timing. By following the detailed protocols, utilizing the recommended reagents, and monitoring the key molecular hallmarks outlined in this application note, researchers can reliably reproduce the homeotic transformation phenomenon and adapt this powerful approach to probe deeper into the mechanisms of developmental biology.
The manipulation of gene expression in model organisms is a cornerstone of modern developmental biology. Research into Hox genesâkey regulators of the body plan along the anterior-posterior axisâexemplifies this approach, particularly in studies investigating the homeotic transformation of body structures [46] [47]. A notable example is the induction of ectopic limbs in anuran tadpoles following vitamin A administration, a process governed by changes in Hox gene expression [6]. Successfully replicating such profound phenotypic changes across different species and individual organisms hinges on efficient delivery of genetic constructs, making transformation efficiency a critical experimental parameter [48].
This application note addresses the significant challenge of variability in transformation efficiency. We provide a structured framework for quantifying this efficiency, analyze its key determinants, and present optimized protocols to enhance experimental reproducibility and success in Hox gene manipulation studies.
Transformation efficiency is quantitatively defined as the number of transformants (cells that have incorporated exogenous DNA) per microgram of DNA used [48]. This metric allows for direct comparison between different experimental conditions, methods, and species. The table below summarizes typical efficiency ranges for common transformation methods in different biological systems.
Table 1: Typical Transformation Efficiency Ranges Across Methods and Systems
| Transformation Method | Typical Efficiency Range (CFU/μg DNA) | Common Applications | Key Influencing Factors |
|---|---|---|---|
| Chemical Transformation (Heat Shock) | 10^5 - 10^8 [48] | Routine cloning in E. coli; some yeast and algal species. | Plasmid size, culture growth phase, competence protocol, recovery media. |
| Electroporation | 10^4 - 10^10 (up to 10^11 for optimized E. coli systems) [48] | Wide range: bacteria, yeast, plant protoplasts, mammalian cells. | Field strength, pulse length, buffer conductivity, DNA quality and form. |
| Ultrasound-Mediated Transformation | ~10^5 (reported maximum in E. coli) [49] | Emerging method for microbial transformation. | Ultrasonic power, exposure time, membrane fluidity, expression of membrane-related genes. |
Beyond the method itself, several intrinsic and extrinsic factors critically impact the efficiency value obtained.
Table 2: Key Factors Affecting Transformation Efficiency and Mitigation Strategies
| Factor | Impact on Efficiency | Evidence-Based Mitigation Strategy |
|---|---|---|
| Plasmid Size | Efficiency declines linearly with increasing plasmid size [48]. | Use minimal vector backbones; for large constructs, consider recombineering or alternative delivery systems (e.g., viral vectors). |
| DNA Form | Supercoiled plasmids are most efficient (~75% for relaxed plasmids; 10^4-fold reduction for single-stranded DNA) [48]. | Isolate high-quality, supercoiled plasmid DNA; avoid nicking. Minimize UV exposure during gel extraction [48]. |
| Cell Genotype & Physiology | Strains with mutations (e.g., deoR, recBC) can show 4-5x higher efficiency [48]. Cells are most competent in early log phase [48]. | Use engineered high-efficiency competent strains (e.g., E. coli DH5α, TOP10). Harvest cells at optimal optical density (OD~0.4). |
| Restriction Barriers | Restriction-modification systems can degrade foreign, unmethylated DNA [48]. | Use dam+/dcm+ strains for propagation; or use strains lacking common restriction systems (e.g., E. coli K-12 derivatives). |
| Membrane Composition | Ultrasound-mediated transformation alters membrane integrity and pores, regulated by genes like cusC, tolA, and ompC [49]. | Optimize physical parameters (e.g., ultrasonic power); pre-validate expression of key membrane transport genes. |
This protocol is adapted for bacterial systems, a common first step in genetic manipulation workflows, and can be adjusted for other cell types.
Principle: To determine the number of colony-forming units (CFUs) per microgram of plasmid DNA obtained after a transformation procedure [48].
Materials:
Procedure:
Calculation: Transformation Efficiency (CFU/μg) = (Number of colonies à Dilution factor) / Amount of DNA plated (μg)
Example: If 100 μL of a 1:10 dilution of the transformation mixture yields 150 colonies from 10 ng of DNA: Efficiency = (150 colonies à 10) / 0.00001 μg = 1.5 à 10^8 CFU/μg [48]
This protocol outlines the key experimental workflow for inducing homeotic transformations, a context where efficient genetic manipulation is often required for mechanistic follow-up.
Principle: Vitamin A (retinoic acid) acts as a morphogen, altering the expression of Hox genes and leading to homeotic transformations, such as the development of ectopic limbs in regenerating tadpole tails [6].
Materials:
Procedure:
The following diagram illustrates the proposed molecular pathway by which vitamin A induces homeotic transformation, integrating the core finding from the anuran model.
This workflow outlines the logical sequence of experiments to systematically address variability in transformation efficiency within a research project.
Selecting the appropriate reagents and materials is fundamental to minimizing variability. The following table details key solutions for experiments involving transformation efficiency and Hox gene analysis.
Table 3: Essential Research Reagents for Genetic Transformation and Hox Gene Studies
| Reagent/Material | Function/Description | Application Notes |
|---|---|---|
| High-Efficiency Competent Cells | Genetically engineered strains (e.g., E. coli DH5α, TOP10) optimized for DNA uptake. | Select strains with high transformation efficiency ((>1x10^8) CFU/μg) for routine cloning. Use specialized strains (e.g., electrocompetent) for difficult transformations [48]. |
| pUC19 Control Plasmid | Small, high-copy-number plasmid with ampicillin resistance; standard for quantifying transformation efficiency. | Use 1-10 pg for high-efficiency chemical transformation and 1-100 pg for electroporation to accurately measure peak efficiency [48]. |
| All-trans Retinoic Acid | The active morphogen derived from Vitamin A that directly modulates Hox gene expression. | Prepare fresh stock solutions in DMSO and protect from light. Dose-response curves are critical due to its potent and sometimes teratogenic effects [6]. |
| SOC Outgrowth Medium | A nutrient-rich recovery medium containing peptides, sugars, and cations. | Use for cell recovery post-transformation to maximize plasmid expression and cell viability, leading to higher observed efficiency [48]. |
| qPCR Assays for Hox Genes | Gene-specific primers and probes for quantifying Hox expression changes (e.g., HoxA13, HoxD13). | Crucial for validating the molecular outcome of treatments like retinoic acid. Normalize to stable housekeeping genes [6] [2]. |
| Membrane Permeabilization Agents | Chemicals like CaClâ for bacterial competence or proprietary reagents for eukaryotic cells. | For chemical transformation, the quality and composition of these agents are primary determinants of efficiency [48]. |
Variability in transformation efficiency is not an insurmountable obstacle but a quantifiable and manageable parameter. By adopting the standardized measurement practices, optimized protocols, and critical reagent selections outlined in this application note, researchers can significantly enhance the reliability and cross-species comparability of their experiments. This rigorous approach is particularly vital for dissecting complex genetic pathways such as those controlled by Hox genes, where consistent genetic manipulation is key to elucidating the mechanisms underlying profound biological phenomena like vitamin A-induced homeotic transformation.
CONTROLLING FOR ENDOGENOUS RA SIGNALING AND METABOLIC INTERFERENCE
Within the context of manipulating Hox gene expression using vitamin A in anuran models, controlling for endogenous retinoic acid (RA) signaling and metabolic interference is a critical methodological consideration. RA, the active metabolite of vitamin A, acts as a potent morphogen and directly regulates the collinear expression of Hox genes, which are key drivers of anteroposterior (A-P) axial patterning and morphological identity [11] [50]. In anuran tadpoles, exogenous vitamin A administration can induce homeotic transformations, such as the formation of ectopic limbs in tail regions, a process linked to the downregulation of posterior Hox genes and subsequent activation of limb development programs like pitx1 [6]. The robust and tightly regulated endogenous RA network presents a significant challenge for these experiments, as it can compensate for perturbations, modulate experimental outcomes, and obscure causal relationships [50]. This Application Note provides detailed protocols and frameworks to effectively control for these variables, ensuring the precise manipulation and accurate interpretation of RA signaling in anuran research.
Retinoic acid signaling is a tightly regulated, multi-step process that begins with dietary vitamin A intake (Figure 1). Retinol (ROL) from the bloodstream, bound to Retinol-Binding Protein (RBP), enters the target cell primarily through the membrane receptor STRA6 [51]. Intracellular ROL is bound by Cellular Retinol Binding Protein 1 (CRBP1) and undergoes a two-step oxidation: first to retinaldehyde (RAL) by enzymes such as Retinol Dehydrogenases (RDH10) or Alcohol Dehydrogenases (ADH), and then to all-trans Retinoic Acid (ATRA) by Retinaldehyde Dehydrogenases (RALDH1, 2, 3) [51] [50]. ATRA is the primary bioactive ligand that translocates to the nucleus, often facilitated by Cellular Retinoic Acid-Binding Protein 2 (CRABP2). Inside the nucleus, ATRA binds to Retinoic Acid Receptors (RARs), which form heterodimers with Retinoid X Receptors (RXRs). This ligand-receptor complex then binds to Retinoic Acid Response Elements (RAREs) in the regulatory regions of target genes, including Hox genes, leading to the recruitment of co-activators and the initiation of transcription [52] [51]. The pathway is characterized by a self-regulating robustness network. Key components, such as raldh2 and the RA-degrading enzyme cyp26a1, are themselves regulated by RA levels, creating feedback and feedforward loops that maintain RA homeostasis and resist external perturbations [50].
Figure 1. The Retinoic Acid (RA) Signaling Pathway. This diagram illustrates the core pathway from dietary vitamin A intake to RA-mediated gene regulation, highlighting key metabolic steps, nuclear activation, and feedback mechanisms. Created using DOT language.
The connection between RA and Hox genes is fundamental to A-P patterning. Hox genes are expressed in a temporally and spatially collinear manner along the A-P axis, creating a "Hox code" that specifies regional identity [11]. RA gradients directly regulate this code by differentially activating Hox genes; genes located more 3' in the Hox cluster are more sensitive to RA and are activated earlier and more anteriorly than 5' genes [11]. In the anuran Rana ornativentris, administration of vitamin A during tail regeneration leads to a homeotic transformation, where ectopic limbs form instead of tails. Molecular analysis of this phenomenon reveals that this transformation is preceded by the downregulation of a posterior Hox gene, which in turn allows for the upregulation of the hindlimb determinant pitx1 [6]. This finding underscores the critical role of RA-mediated Hox gene regulation in determining organ and axial fate. The exquisite sensitivity of this system means that even minor, unaccounted-for fluctuations in endogenous RA signaling can significantly alter experimental results.
Table 1: Quantitative Data on RA Signaling Components and Perturbations
| Parameter / Component | Quantitative Data / Concentration | Biological Context / Effect |
|---|---|---|
| Physiological RA Fluctuation | Within physiological range (e.g., 1â2 μM blood retinol [51]) | Mild developmental malformations; network robustness is activated [50]. |
| Supraphysiological RA | Non-physiological, high concentrations (common in literature) | Severe embryonic malformations (anterior/posterior axis, neural tube) [50]. |
| RA Synthesis Inhibitor (DEAB) | 1â100 μM (common in vivo use) | Inhibits RALDH activity, reduces endogenous RA levels [50]. |
| RARγ-specific Inhibitor (LY2955303) | 10 μM | Improved bovine IVF blastocyst rates via metabolic reprogramming [53]. |
| RAR Antagonist (BMS-195614) | 10 μM | Used to block RAR signaling in embryo culture assays [53]. |
| RA Knockdown Feedback Limit | Upper response limit exists | Network robustness has a maximum capacity to respond to reduced RA [50]. |
| RA Addition Feedback Threshold | Minimal activation threshold exists | A specific increase in RA is required to trigger feedback loops [50]. |
| Anuran RA Treatment | Varies by species and desired effect | Induces ectopic limb formation via posterior Hox downregulation and pitx1 upregulation [6]. |
This protocol outlines a method to reduce baseline RA signaling in anuran embryos, allowing for the study of loss-of-function phenotypes and providing a controlled baseline for RA supplementation experiments.
I. Materials
II. Procedure
III. Troubleshooting
This protocol is designed to account for and measure the compensatory response of the RA metabolic network, which can confound experimental outcomes.
I. Materials
II. Procedure
After manipulating RA signaling, it is crucial to directly assess the resulting changes in the Hox code.
I. Materials
II. Procedure
Table 2: Essential Research Reagents for Controlling RA Signaling
| Reagent / Material | Function / Application | Key Considerations |
|---|---|---|
| DEAB (Diethylaminobenzaldehyde) | Small-molecule inhibitor of Retinaldehyde Dehydrogenases (RALDH); reduces de novo RA synthesis [50]. | Used to lower endogenous RA levels; effective concentration must be empirically determined for each model system. |
| BMS-195614 | A pan-RAR antagonist that blocks RA signaling at the receptor level [53]. | Used in combination with synthesis inhibitors for a more complete RA signaling blockade. |
| LY2955303 | A specific inhibitor for the Retinoic Acid Receptor gamma (RARγ) [53]. | Useful for dissecting the specific role of RARγ in developmental processes; shows species-specific effects. |
| all-trans Retinoic Acid (ATRA) | The primary bioactive retinoid ligand; used for exogenous RA supplementation. | Highly labile; sensitive to light and oxygen. Prepare fresh stock solutions and use precise, physiological doses. |
| qPCR Primers for RA Network Genes | Validated primers for raldh2, cyp26a1, dhrs3, rdh10; used to monitor RA network feedback. | Essential for validating the efficacy of perturbations and measuring network robustness [50]. |
| qPCR Primers for Hox Genes | Validated primers for anterior, central, and posterior Hox genes; used to read out the "Hox code". | Critical for confirming the primary molecular outcome of RA manipulations [6] [11]. |
Hox genes are master regulators of embryonic development, encoding transcription factors that establish the anterior-posterior (A-P) body axis in bilaterian animals [54] [55]. Their unique genomic organization into clusters and precise spatiotemporal expression patterns make them critical targets for developmental biology research. In anuran models, the manipulation of Hox gene expression using vitamin A (retinoic acid, RA) provides a powerful experimental paradigm for investigating axial patterning mechanisms. This application note details standardized protocols for achieving precise spatial and temporal control of Hox gene manipulation, framed within the context of vitamin A research in anuran systems.
The fundamental principle underlying these strategies is collinearity - the correspondence between the genomic order of Hox genes and their sequence of activation in time and space during development [56] [55]. Temporal collinearity refers to the sequential activation of Hox genes from 3' to 5' within clusters during early development, while spatial collinearity describes their nested expression domains along the A-P axis [57]. Vitamin A-derived RA signaling directly regulates this process through retinoic acid response elements (RAREs) embedded within Hox clusters, making it a potent natural modulator of Hox expression [54].
Hox genes exhibit a remarkable genomic organization that underlies their coordinated regulation. In vertebrates, these genes are arranged in four clusters (HoxA, B, C, and D), with the order of genes on the chromosome corresponding to their expression patterns along the A-P axis [55]. This structural-functional relationship enables the combinatorial Hox code that specifies regional identities in developing embryos [54].
The regulation of Hox genes occurs through sophisticated chromatin dynamics. In embryonic stem cells, Hox clusters exist in a bivalent chromatin state containing both repressive (H3K27me3) and activating (H3K4me3) marks [57]. During activation, genes progressively transition from an inactive compartment to an active one, with their physical relocation within the nucleus reflecting their transcriptional status [57]. This dynamic chromatin architecture provides the structural foundation for implementing temporal collinearity.
Table 1: Fundamental Properties of Hox Gene Regulation
| Property | Description | Experimental Significance |
|---|---|---|
| Collinearity | Correspondence between genomic position and spatiotemporal expression | Predicts activation sequence; informs timing of interventions |
| Chromatin Bivalency | Presence of both activating and repressing histone marks in silent genes | Enables plastic response to signaling gradients |
| RARE Elements | Retinoic acid response elements embedded in Hox clusters | Direct target for vitamin A manipulation |
| Bimodal 3D Organization | Spatial separation of active/inactive genes in nuclear compartments | Correlates with transcriptional status; can be monitored |
| Enhancer Sharing | Regulatory elements that control multiple Hox genes | Allows coordinated regulation of gene subgroups |
Vitamin A-derived retinoic acid serves as a key morphogen regulating Hox gene expression through direct binding to RAREs [54]. These RAREs function as cis-regulatory components of RA-dependent enhancers that provide regulatory inputs both locally on adjacent Hox genes and over long distances to coordinately regulate multiple genes within a cluster [54]. The presence of specific RAREs at various positions within Hox clusters enables graded RA signaling to elicit distinct transcriptional responses according to the collinearity principle.
In anuran models, the RA signaling pathway intersects with other key patterning systems, particularly BMP signaling [56]. The antagonism between BMP and anti-BMP factors establishes a crucial regulatory network that converts temporal information into spatial patterning along the A-P axis [56]. This interaction explains the famous connection between dorsoventral (D-V) and A-P patterning in vertebrate embryos and provides additional experimental handles for manipulating Hox expression.
The sequential activation of Hox genes during development enables temporal-specific manipulation by targeting particular genes based on their position in the collinear sequence. The following protocols leverage the inherent timing of the "Hox clock" for precise experimental interventions.
Principle: The competence of Hox genes to respond to RA changes during development, allowing stage-specific manipulation by administering RA at precise timepoints.
Materials:
Procedure:
Technical Notes:
Principle: Leverage temporally-specific endogenous promoters to drive effectors at precise developmental windows.
Materials:
Procedure:
Spatially restricted manipulation requires targeting specific regions along the A-P axis where particular Hox genes are active. The following protocols enable region-specific interventions.
Principle: Exploit the natural RA responsiveness of Hox genes while restricting exposure to specific embryonic regions.
Materials:
Procedure:
Principle: Use regional electroporation to deliver constructs to specific territories along the A-P axis.
Materials:
Procedure:
Principle: Use CRISPR/Cas9 systems with temporal and spatial control to edit specific Hox genes.
Materials:
Procedure:
Table 2: Hox Gene Targeting by Axial Position
| Axial Region | Hox Paralogs | CRISPR Targets | RA Sensitivity |
|---|---|---|---|
| Hindbrain | Hox1-4 | Promoter, homeodomain | High (early) |
| Anterior Trunk | Hox5-8 | Conserved motifs | Moderate (mid) |
| Posterior Trunk | Hox9-10 | Specific enhancers | Low (late) |
| Tailbud | Hox11-13 | Autoregulatory sites | Variable |
Whole-mount in situ hybridization remains the gold standard for visualizing Hox expression domains. Modifications for anuran embryos:
Live imaging of reporter constructs enables real-time tracking:
qRT-PCR analysis of Hox expression:
Chromatin conformation analysis:
Table 3: Essential Research Reagents for Hox Gene Manipulation
| Reagent/Category | Specific Examples | Function/Application |
|---|---|---|
| Retinoic Pathway Modulators | All-trans retinoic acid, BMS493 (inverse agonist), AGN193109 (antagonist) | Direct pharmacological manipulation of RA signaling |
| Signaling Pathway Modulators | Noggin (BMP antagonist), FGF inhibitors (SU5402), Wnt modulators | Secondary pathway manipulation to influence Hox expression |
| CRISPR Systems | Cas9 protein, synthetic sgRNAs, Hox-specific targeting vectors | Direct gene editing and epigenetic manipulation |
| Expression Reporters | Hox promoter-GFP constructs, RA-responsive element reporters | Live imaging and response quantification |
| Chromatin Modifiers | TSA (HDAC inhibitor), DZNep (EZH2 inhibitor) | Epigenetic landscape manipulation |
| Delivery Tools | Heparin-coated beads, electroporation equipment, microinjection systems | Spatial-temporal restricted application |
Diagram 1: Experimental workflow for Hox gene manipulation
Variable RA sensitivity between embryo batches:
Off-target effects in CRISPR approaches:
Mosaic expression in electroporation:
Essential validation steps for Hox manipulation experiments:
The precise spatial and temporal manipulation of Hox gene expression in anuran models requires integrated approaches that respect the inherent collinearity of these gene clusters. Vitamin A (retinoic acid) manipulation provides a powerful and physiologically relevant method for interrogating Hox function, particularly when combined with modern genetic tools and careful attention to developmental timing and spatial boundaries. The protocols outlined here provide a framework for designing experiments that capture the dynamic regulation of these crucial patterning genes while minimizing technical artifacts. As our understanding of Hox chromatin dynamics and regulatory mechanisms continues to advance, increasingly sophisticated manipulation strategies will emerge, further enhancing our ability to decipher the complex language of axial patterning.
Retinoic acid (RA) signaling and Hox gene expression represent a deeply conserved developmental module that orchestrates anterior-posterior (A-P) axis patterning across vertebrate species. This RA-Hox axis operates through core principles that are maintained in zebrafish, chick, and mammalian models, despite lineage-specific genetic expansions. In all three models, RA functions as a key upstream regulator of Hox gene expression, while Hox genes translate this signaling into precise positional information along the A-P axis. This conserved machinery particularly governs the development of paired appendages and hindbrain segmentation, with evolutionary variations reflecting species-specific adaptations. The mechanistic conservation of this pathway enables cross-species experimental approaches and validates the use of alternative models like anurans for investigating fundamental principles of Hox gene regulation by vitamin A derivatives.
The RA-Hox signaling pathway constitutes a fundamental genetic circuit that translates nutritional vitamin A into precise developmental patterning information. This circuit operates through a conserved series of molecular interactions:
Figure 1: Conserved RA-Hox Signaling Pathway. This core genetic circuit operates across zebrafish, chick, and mammalian models to translate vitamin A status into anterior-posterior patterning decisions through regulation of collinear Hox gene expression.
Table 1: Comparative RA-Hox Pathway Components Across Vertebrate Models
| Function | Zebrafish | Chick | Mouse/Mammalian | Conservation Level |
|---|---|---|---|---|
| RA Synthesis | aldh1a2, aldh1a3 | RALDH2 (ALDH1A2) | RALDH2 (ALDH1A2) | High - Essential for RA biosynthesis in all models [58] |
| Forelimb/Fin Positioning Hox Genes | hoxb4a, hoxb5a, hoxb5b (hoxba/hoxbb clusters) | Hoxb4, Hoxb5, Hoxc6 | Hoxb5, Hoxc6 | Medium - Functional conservation with species-specific cluster expansions [59] [60] |
| Hindbrain Hox Regulation | hoxb1a, hoxb2, hoxb3 | Hoxb1, Hoxb2 | Hoxb1, Hoxb2 | High - Conserved rhombomere expression boundaries [11] |
| Direct Limb/Fin Target | tbx5a | Tbx5 | Tbx5 | High - Essential for appendage initiation [59] [60] |
| RA Response Element Binding | RARα, RARβ, RARγ | RARα, RARβ, RARγ | RARα, RARβ, RARγ | High - Conserved receptor specificity [58] |
Table 2: Key Experimental Findings Demonstrating RA-Hox Conservation
| Experimental Manipulation | Zebrafish Phenotype | Chick/Mammalian Phenotype | Functional Interpretation |
|---|---|---|---|
| Hox Cluster Deletion | hoxba;hoxbb double mutants: Complete pectoral fin loss with absent tbx5a expression [59] [60] | Mouse Hoxb5 KO: Rostral forelimb shift with incomplete penetrance [59] [60] | Essential Hox requirement for appendage positioning, with zebrafish showing stronger phenotype due to experimental completeness |
| RA Signaling Inhibition | aldh1a2 mutants: Pectoral fin defects, disrupted hox expression [58] | VAD syndrome: Limb defects, hindbrain abnormalities [58] [61] | Conserved RA requirement for proper Hox expression and appendage development |
| RA Ectopic Application | Anterior hox expansion, posteriorization [58] | Hindbrain expansion, forebrain repression [61] | Conserved teratogenic effects via Hox gene misregulation |
| Hox-Tbx Genetic Interaction | hoxb4a/b5a directly induce tbx5a in pectoral fin field [59] | Hox proteins bind Tbx5 limb enhancer [59] [60] | Conserved direct transcriptional regulation of limb initiation program |
| Temporal Collinearity | Hoxb temporal collinearity regulates gastrulation timing [62] | Hoxb temporal collinearity controls mesoderm ingression timing [62] | Conserved mechanism linking temporal Hox expression to spatial patterning |
This protocol outlines the genetic approach for determining Hox gene requirements in zebrafish pectoral fin positioning, based on established methodologies that provided the first genetic evidence for Hox genes specifying paired appendage positions in vertebrates. The approach leverages zebrafish's seven hox clusters derived from teleost-specific genome duplication to parse functional redundancy and essential requirements [59] [60].
Generate hox cluster mutants:
Phenotypic analysis:
Genetic interaction tests:
RA response competence:
This protocol adapts principles from zebrafish and chick RA-Hox studies for anuran models, specifically exploiting the homeotic transformation of tails into limbs induced by vitamin A treatment. The approach capitalizes on the conserved responsiveness of Hox genes to RA signaling to investigate appendage patterning in regenerating systems [6].
Vitamin A administration:
Temporal expression analysis:
Morphological assessment:
Inhibition experiments:
This protocol utilizes the evolutionarily conserved RA response elements in Hox gene regulatory regions to compare RA signaling sensitivity across species. The approach builds on studies demonstrating direct RA regulation of Hox clusters and enables quantitative assessment of RA-Hox circuitry conservation [58] [11].
Reporter construction:
Transfection and treatment:
Luciferase assay:
Data analysis:
Table 3: Essential Research Reagents for RA-Hox Pathway Investigation
| Reagent Category | Specific Examples | Function/Application | Species Applicability |
|---|---|---|---|
| Genetic Models | hoxba/hoxbb cluster mutants [59], aldh1a2 mutants [58] | Determine gene requirement through loss-of-function | Zebrafish |
| Hoxb5 knockout mice [59] | Mammalian Hox gene function assessment | Mouse | |
| RA Pathway Modulators | All-trans RA (agonist) [6] [58] | Activate RA signaling, posteriorize embryos | All vertebrates |
| DEAB, BMS-493 (antagonists) [61] | Inhibit RA synthesis and signaling | All vertebrates | |
| Molecular Probes | tbx5a/tbx5 in situ hybridization probes [59] | Visualize limb/fin field initiation | Cross-species applicable |
| Hox paralog-specific antibodies | Protein localization and expression analysis | Species-specific validation needed | |
| Reporting Systems | Hox promoter-luciferase constructs [58] | Quantitative RA responsiveness measurement | Cross-species comparative |
| RARE-LacZ transgenic lines | Visual RA signaling activity in vivo | Mouse, adaptable to other models | |
| CRISPR Tools | Cluster-specific gRNA libraries [59] | Systematic Hox cluster deletion | All genetic models |
| HDR templates for precise editing | Knock-in alleles, conditional mutations | All genetic models |
Figure 2: Integrated RA-Hox Patterning System. The conserved pathway from RA signaling through temporal collinearity to spatial patterning generates species-specific morphological outcomes through regulation of target genes like Tbx5, demonstrating how conserved principles produce model-specific readouts.
The conserved RA-Hox axis provides a fundamental framework for understanding anterior-posterior patterning across vertebrate models. The experimental protocols outlined here leverage this deep conservation to enable cross-species investigations of vitamin A-mediated Hox gene regulation. For researchers focusing on anuran models, these principles provide validated approaches for manipulating appendage patterning through RA signaling manipulation. The consistent finding that Hox genes function as key intermediaries between RA signaling and morphological outcomes underscores their central role in translating nutritional signals (vitamin A) into precise developmental decisions, with important implications for both evolutionary biology and teratology research.
Hox genes, which encode a highly conserved family of transcription factors, are master regulators of embryonic patterning along the anterior-posterior axis. Recent research has illuminated their critical functions beyond development, including their roles in cardiovascular system formation and the pathogenesis of adult cardiovascular diseases. A primary regulator of Hox gene expression is vitamin A (retinoic acid, RA), which directly controls Hox transcription through specific retinoic acid response elements (RAREs) [63]. This application note provides a comparative analysis of Hox gene functions in cardiovascular development and disease, framed within the context of anuran models where vitamin A manipulation induces profound homeotic transformations. We present structured quantitative data, experimental protocols for key investigations, and visualization of regulatory networks to support research and therapeutic development in this field.
Hox genes exhibit distinct expression patterns and functions during cardiovascular development compared to their dysregulation in disease states. Understanding these contextual differences is essential for elucidating their dual roles and therapeutic potential.
Table 1: Comparative Analysis of Key Hox Genes in Cardiovascular Development and Disease
| Hox Gene | Role in Cardiovascular Development | Dysregulation in Cardiovascular Disease | Experimental Models |
|---|---|---|---|
| HOXA5 | Patterning of second heart field (SHF) and pharyngeal arch arteries [64] | Most downregulated gene in ascending thoracic aortic aneurysm (ATAA) (FC: -25.3); suppresses phenotypic switching of VSMCs in atherosclerosis [65] [66] | Mouse models, Human ATAA tissue [66] |
| HOXA1 | Specification of cardiac progenitor cells; patterning of SHF [64] | Participates in atherosclerosis via miR-99a-5p-HOXA1 axis; affects HUVEC viability and migration [65] | Mouse models, Cell culture (HUVECs) [65] |
| HOXC6 | Involvement in early lineage commitment and specification [64] | Significantly downregulated in ATAA; inhibits apoptosis of vascular endothelial cells and VSMC proliferation [65] [66] | Human ATAA tissue, Cell culture models [66] |
| HOXA3 | Contributes to cardiac neural crest and great artery formation [64] | Promotes angiogenesis in pathological contexts [65] | Mouse models, Angiogenesis assays [65] |
| HOXB5 | Expressed in posterior SHF contributing to venous pole [64] | Promotes endothelial inflammation via MCP-1 and IL-6 [65] | Zebrafish models, Cell culture [65] |
During embryogenesis, Hox genes provide positional identity and regulate the morphogenesis of cardiovascular structures. Anterior Hox genes (e.g., Hoxa1, Hoxb1, Hoxa3) are expressed in the second heart field (SHF), a population of cardiac progenitor cells that contribute to the outflow tract, right ventricle, and atrial myocardium [64]. Their expression is tightly regulated by retinoic acid signaling, which establishes spatial and temporal gradients crucial for proper heart tube elongation and patterning. Cardiac neural crest cells, which require Hox gene expression for their migration and differentiation, are essential for the remodeling of the pharyngeal arch arteries and outflow tract septation [64] [67].
In adult pathophysiology, dysregulation of Hox genes is implicated in various cardiovascular diseases. Atherosclerosis involves multiple Hox genes in processes such as lipid metabolism, inflammatory response, angiogenesis, and vascular smooth muscle cell (VSMC) phenotypic switching [65]. For instance, HOXA5 exerts protective effects by suppressing VSMC transition to a synthetic phenotype via PPARγ activation, while HOXB5 promotes inflammation through monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) [65]. In ascending thoracic aortic aneurysm (ATAA), dramatic downregulation of HOXA5 and HOXC6 is observed, suggesting their critical role in maintaining aortic wall integrity [66].
Vitamin A (retinoic acid) serves as a potent transcriptional regulator of Hox genes. The anuran (Rana ornativentris) model provides compelling evidence for this relationship, where vitamin A administration during tail regeneration induces homeotic transformation, resulting in ectopic limb formation instead of tail regrowth [6].
Molecular analyses reveal that this transformation is preceded by the downregulation of posterior Hox genes, which subsequently leads to the upregulation of hind limb patterning genes such as pitx1 [6]. This demonstrates that Hox genes act upstream of limb developmental pathways in response to retinoid signaling. The conserved nature of RA-Hox gene signaling across vertebrates, from anurans to mammals, underscores its fundamental role in patterning and morphogenesis.
Table 2: Quantitative Differential Expression of HOX Genes in Human Cardiovascular Disease
| Cardiovascular Condition | Significantly Altered HOX Genes | Magnitude of Change (Fold Change) | Primary Cellular Processes Affected |
|---|---|---|---|
| Ascending Thoracic Aortic Aneurysm (ATAA) [66] | HOXA5, HOXC6, HOXA3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, HOXB3, |
HOX genes are a family of 39 evolutionarily conserved transcription factors, organized into four clusters (A, B, C, and D) on different chromosomes, that play pivotal roles in embryonic development, tissue patterning, and cell differentiation [68] [69]. These genes encode proteins with a characteristic 60-61 amino acid homeodomain that facilitates DNA binding, enabling them to act as master regulators of cell identity [69]. Their expression follows a precise spatiotemporal pattern during embryogenesis, a principle known as collinearity, where the position of a gene within its cluster correlates with its expression along the anterior-posterior axis and the timing of its activation [68].
In recent decades, it has become evident that the same genes controlling embryonic development are often deregulated in cancer [68] [69]. HOX genes are no exception; their aberrant expression is a hallmark of numerous malignancies, including prostate cancer. They can function as either oncogenes or tumor suppressors, influencing key cancer hallmarks such as cell proliferation, apoptosis, metastasis, and angiogenesis [69]. This application note explores the implications of HOX gene dysregulation in human cancers, with a focus on prostate cancer, and provides detailed protocols for studying their function, framed within the context of fundamental research using anuran models.
Epidemiological and molecular studies have firmly established the link between specific HOX gene dysregulation and prostate cancer (PCa) initiation, progression, and risk.
The HOXB13 G84E mutation stands as one of the most significant genetic risk factors identified for hereditary prostate cancer. This variant was initially discovered through linkage analysis in high-risk families and subsequent fine-mapping of the chromosome 17q21-22 region [70].
Table 1: Epidemiological Studies of the HOXB13 G84E Mutation in Prostate Cancer
| Study | Study Population | Case Carrier Frequency | Risk Estimate (OR/RR) | Key Association |
|---|---|---|---|---|
| Ewing et al. [70] | US (Population-based) | 1.40% | OR = 20.1 | Early diagnosis, positive family history |
| Karlsson et al. [70] | Sweden (Population-based) | 4.30% - 4.60% | RR = 3.4 | General population risk |
| Breyer et al. [70] | US (Family-based) | 1.90% | OR = 7.9 | Positive family history |
| Stott-Miller et al. [70] | US (Population-based) | 1.30% | RR = 3.3 | Higher Gleason score, advanced disease |
The G84E variant is located in a highly conserved MEIS protein-binding domain and is postulated to modulate the interaction between HOXB13 and the androgen receptor, thereby influencing transcriptional programming and increasing cancer risk [70]. While HOXB13 often acts as a tumor suppressor, its role is context-dependent, and other HOX genes are frequently overexpressed in prostate tumors.
Beyond HOXB13, transcriptomic analyses reveal that prostate tumors exhibit a profoundly different HOX gene expression landscape compared to normal prostate tissue. Multiple HOX genes are significantly upregulated in prostate cancer-derived cell lines (e.g., LNCaP, PC3, DU145) and primary tumors [71]. This includes genes from the HOXC cluster (e.g., HOXC4, HOXC6, HOXC8), as well as HOXB5, HOXB7, and HOXA10 [71] [72]. This widespread dysregulation suggests a collective pro-oncogenic role for many HOX genes in prostate cancer, promoting cell survival and proliferation.
Table 2: Select HOX Genes and Their Roles in Solid Tumors
| HOX Gene | Role in Cancer | Proposed Mechanism | Relevant Cancer Types |
|---|---|---|---|
| HOXB13 | Tumor Suppressor | Suppresses c-Myc via β-catenin/TCF4 signaling [69] | Prostate, Colon, Lung Cancer |
| HOXA9 | Oncogene | Recruits CEBPα & MLL3/MLL4 complexes at enhancers [69] | Leukemia, Pancreatic Cancer, NSCLC |
| HOXA10 | Oncogene | Suppresses FASN transcription, interacts with AR [69] | Prostate Cancer, Testicular Cancer |
| HOXC6 | Oncogene | Enhances BCL2-mediated anti-apoptotic effects [69] | Prostate Cancer, Other Solid Tumors |
| HOXA13 | Oncogene | Regulated by IGF-1; involved in long-range chromatin loops [73] [69] | Colorectal, Gastric Cancer |
The study of anuran models (frogs and toads) has been instrumental in understanding the fundamental principles of HOX gene regulation. A classic experiment involves the treatment of Rana ornativentris tadpoles with vitamin A (retinoic acid), which induces a homeotic transformationâthe formation of ectopic limbs in place of a regenerating tail [6].
At the molecular level, this dramatic phenotypic change is preceded by the downregulation of posterior Hox genes in the regenerating tail tissue. This shift in Hox expression creates a cellular environment permissive to limb development, ultimately leading to the upregulation of key limb patterning genes like pitx1 [6]. This demonstrates that Hox genes are key targets of retinoid signaling and that their manipulation can fundamentally alter tissue identity.
This foundational research directly informs cancer biology. Retinoic acid (RA) is a potent regulator of Hox gene expression during embryonic development [12]. In mammalian systems, RA signaling can coordinately upregulate anterior 3' Hox genes while downregulating posterior 5' Hox genes in certain cell types [74]. The mechanisms discovered in anuransâwhereby RA reprograms Hox codes to alter cell fateâare analogous to the processes in cancer cells where Hox gene dysregulation drives oncogenic transformation and progression. The following diagram illustrates this conserved signaling pathway.
This section provides detailed methodologies for key experiments investigating HOX gene function in cancer biology.
Application: Assessing the dependency of cancer cells on HOX protein function for survival and testing a potential therapeutic strategy [71].
Background: The HXR9 peptide is a competitive antagonist that disrupts the interaction between HOX proteins (paralogs 1-10) and their PBX co-factor. This global inhibition of HOX function triggers apoptosis in cancer cells that are reliant on HOX signaling.
Materials:
Procedure:
Application: Identifying long-range genomic interactions between non-coding risk loci and HOX gene promoters in prostate cancer [73].
Background: Genome-wide association studies (GWAS) have identified many cancer risk variants in non-coding regions. Hi-C technology allows for the genome-wide mapping of chromatin interactions to determine how these regulatory elements physically contact and control target genes like HOXA13.
Materials:
Procedure:
The workflow for this integrated functional genomics approach is outlined below.
Table 3: Key Reagent Solutions for HOX Gene Cancer Research
| Reagent / Tool | Function / Application | Key Example / Specification |
|---|---|---|
| HXR9 Peptide [71] | Global inhibition of HOX/PBX dimers; induces apoptosis in HOX-dependent cancer cells. | 18 amino acids, D-isomer bonds, polyarginine tag for cell penetration. |
| siRNA/shRNA Libraries | Knockdown of individual HOX genes to study specific functions (despite redundancy challenges). | Targeted siRNAs for genes like HOXB13, HOXC6. |
| HOX Gene Expression Vectors | Forced overexpression to study oncogenic potential and transcriptomic impact. | e.g., HOXA13 expression vector [73]. |
| Retinoic Acid (RA) [74] | Physiological and pharmacological modulator of HOX gene expression patterns. | Used in vitro to model HOX gene regulation. |
| CRISPR/Cas9 System [73] | Deletion of non-coding regulatory elements or knockout of HOX gene coding sequences. | Used to delete a 4kb PCa risk region at 7p15.2. |
| Antibodies (IHC/ChIP) | Protein localization and quantification; mapping transcription factor binding sites. | Anti-HOXB13, anti-PBX, anti-H3K27ac. |
HOX gene dysregulation is a critical factor in the pathogenesis of prostate and other cancers. The discovery of hereditary risk mutations like HOXB13 G84E and the widespread overexpression of multiple HOX genes in tumors underscore their clinical significance. Research in anuran models provides a foundational understanding of how external signals like vitamin A can reprogram HOX gene expression to alter cell fateâa mechanism that, when dysregulated, contributes to oncogenesis.
Experimental approaches such as global HOX/PBX inhibition with HXR9 and mapping of 3D chromatin architecture with Hi-C offer powerful tools to decipher HOX-driven oncogenic networks. Moving forward, the challenge lies in translating this knowledge into targeted therapies. Given the functional redundancy of HOX genes, strategies that target shared co-factors (like PBX) or downstream effector pathways may prove more effective than targeting individual HOX genes. Integrating the fundamental principles of HOX biology from developmental models will continue to be invaluable in the ongoing effort to combat cancer.
Retinoic acid (RA), a metabolite of Vitamin A, is a critical signaling molecule that regulates numerous aspects of embryonic development. It functions as a ligand for nuclear retinoic acid receptors (RARs), which form heterodimers with retinoid X receptors (RXRs) to control the transcription of target genes, including the Hox family of transcription factors that orchestrate anteroposterior patterning [11] [75]. The precise spatiotemporal regulation of RA bioavailability is paramount; deviations in either directionâexcess or deficiencyâare profoundly teratogenic. This application note explores the clinical insights gained from human syndromes and experimental models where disrupted RA signaling leads to microcephaly and other congenital defects. Furthermore, it provides detailed methodological frameworks for investigating these phenomena, with particular emphasis on their relevance to Hox gene manipulation studies in anuran models.
A growing body of evidence links reduced RA signaling to a spectrum of human developmental disorders. Syndromes such as DiGeorge, Smith-Magenis, Matthew-Wood, and Fetal Alcohol Syndrome (FAS) all exhibit microcephaly and have been attributed to compromised RA signaling [41]. The causative link suggests a previously underappreciated requirement for RA during early head formation. This connection is further strengthened by the observation that Vitamin A Deficiency (VAD) in humans presents with severe ocular manifestations, growth retardation, and an increased susceptibility to infections, including urinary tract infections, due to epithelial keratinization and immune dysfunction [76]. These clinical findings provide a compelling rationale for intensive research into the molecular and cellular mechanisms governed by RA during embryogenesis.
Table 1: Craniofacial Defects in Mouse Embryos Following Prenatal Retinoic Acid Exposure (ATRA) at E9.5
| Measurement Parameter | Control Embryos | ATRA-100 Treated Embryos | Change | Statistical Significance (p-value) |
|---|---|---|---|---|
| Meckel's Cartilage Length (Left) | Baseline | 16.5% smaller | Reduction | p = 0.0149 |
| Meckel's Cartilage Length (Right) | Baseline | 13.5% smaller | Reduction | p = 0.01 |
| Depth of the Palate | Baseline | 14% smaller | Reduction | p = 0.0101 |
| Embryonic Resorption Rate | 0% | 48% | Increase | Not provided |
Table 2: Spectrum of Neural Tube Defects (NTDs) in a Han Chinese Cohort (355 Cases)
| Neural Tube Defect Phenotype | Number of Individuals |
|---|---|
| Spina Bifida Aperta | 91 |
| Encephalocele | 57 |
| Anencephaly with Spina Bifida Aperta | 55 |
| Spina Bifida Cystica | 42 |
| Spina Bifida Occulta | 26 |
| Anencephaly | 17 |
| Craniorachischisis | 19 |
Table 3: Key Genetic Findings in RA Pathway and Neural Tube Defects
| Gene | Function | Association with Defects |
|---|---|---|
| CYP26B1 | RA degradation enzyme | Majority of missense variants found in NTD cases; functional assays show reduced RA degradation efficiency [77]. |
| ALDH1A2 (RALDH2) | Key RA synthesizing enzyme | Mutants die early with anterior head malformations; associated with reduced RA signaling and microcephaly [41] [78] [75]. |
| ALDH1A3 (RALDH3) | RA synthesizing enzyme | Gene-specific knockdowns identify it as a key enzyme for head formation [41]. |
| HOX Genes (PG1-PG4) | Transcription factors for patterning | Form a "hindbrain code" regulated by RA; disruption causes severe hindbrain and craniofacial defects [11]. |
This protocol details the partial inhibition of RA biosynthesis to study its effects on gastrulation and head formation, recapitulating the teratogenic effects observed in Fetal Alcohol Syndrome [41] [78].
Materials:
Procedure:
This protocol describes the use of a genetically engineered mouse model to induce a transient, spatially restricted RA deficiency during gastrulation, phenocopying prenatal alcohol exposure [79].
Materials:
Procedure:
Diagram 1: Retinoic Acid Signaling Pathway and Experimental Disruption. The core RA biosynthesis and signaling pathway is shown in solid colors. Key experimental methods for disrupting RA signaling to model disease are indicated by dashed red lines.
Diagram 2: Experimental Workflow for RA Disruption Studies. A generalized workflow for designing experiments to investigate the developmental roles of RA, highlighting key decision points in model selection and multi-tiered phenotypic analysis.
Table 4: Essential Research Reagents for RA Signaling Studies
| Reagent / Tool | Category | Function in Research | Example Application |
|---|---|---|---|
| DEAB (4-Diethylaminobenzaldehyde) | Small Molecule Inhibitor | Inhibits retinaldehyde dehydrogenases (ALDH1A), blocking RA biosynthesis [78]. | Induce RA deficiency in Xenopus embryos from mid-blastula transition to model FASD [78]. |
| Citral | Small Molecule Inhibitor | Acts as a competitive inhibitor of retinaldehyde dehydrogenases, reducing RA production. | Used in Xenopus and zebrafish studies to probe the role of RA in gastrulation and Hox gene regulation. |
| Gsc-Cyp26A1 Mouse | Genetic Model | Spatially and temporally controlled RA degradation; Cyp26A1 expressed from Goosecoid promoter [79]. | Models transient RA deficiency during gastrulation to phenocopy prenatal alcohol exposure defects [79]. |
| CYP26B1 Mutants | Genetic Variants | Human or engineered variants with reduced RA degradation efficiency, leading to local RA excess [77]. | Study the etiology of human neural tube defects and the functional consequences of rare genetic variants [77]. |
| Hox Reporter Lines | Reporter Assay | Transgenic animals or cells with fluorescent reporters under the control of Hox gene promoters or RAREs. | Visualize and quantify the response of Hox genes to RA signaling perturbations in live embryos. |
| Anti-Fibronectin Antibodies | Immunological Tool | Detect deposition of fibronectin matrix, a substrate for cell migration dependent on RA signaling [78]. | Assess the cellular mechanisms underlying RA-mediated gastrulation defects, such as impaired cell migration [78]. |
The study of human syndromes and experimental models has unequivocally established that both excess and deficient RA signaling are potent drivers of microcephaly and congenital malformations. The molecular etiology of these defects is deeply rooted in the disruption of fundamental developmental processes, including the regulation of Hox gene expression, neural crest cell migration, and morphogenetic movements during gastrulation. The experimental protocols and tools detailed herein provide a robust framework for researchers, particularly those using anuran models, to dissect the precise mechanisms linking RA to these outcomes. Future research should leverage these models to identify and test potential therapeutic interventions, such as targeted nutritional supplementation or pharmacological agents, that could prevent or mitigate the devastating consequences of disrupted RA signaling in human development.
The manipulation of Hox gene expression using vitamin A (retinoic acid) in anuran models represents a cornerstone of developmental biology research, providing critical insights into the genetic regulation of axial patterning and limb development. Recent U.S. regulatory shifts are accelerating the transition from traditional animal models to human-relevant approaches, making anuran research increasingly valuable as a complementary platform that bridges fundamental discovery and clinical application. The FDA Modernization Act 2.0 (2022) eliminated the statutory mandate for animal testing, explicitly authorizing human-relevant models as valid evidence for drug development [80]. Concurrently, the NIH has implemented funding priorities that favor research incorporating human-based technologies, effectively barring proposals that rely exclusively on animal data [80] [81]. This evolving landscape positions anuran models as a strategically refined animal system that provides high-throughput developmental insights while aligning with the "Reduce" and "Refine" principles of the 3Rs framework, creating a crucial bridge to human biomedical applications.
Research using Rana ornativentris tadpoles has demonstrated that vitamin A administration induces a remarkable homeotic transformation, where tail regeneration following amputation is redirected to form ectopic limbs instead of tail structures [6]. Molecular analyses of this phenomenon reveal that vitamin A (retinoic acid) triggers downregulation of posterior Hox genes prior to visible ectopic limb bud formation. This Hox expression change precedes the upregulation of pitx1, a critical gene expressed in the earliest hind limb bud, suggesting that Hox genes operate upstream of hind limb specification genes in the regulatory hierarchy [6]. These findings from anuran models illuminate fundamental mechanisms of positional identity and developmental plasticity that have direct relevance for understanding human congenital disorders and regenerative medicine approaches.
Table 1: HOX Gene Functions in Human Development and Pathologies
| HOX Gene/Cluster | Developmental Role | Pathological Association | Clinical Relevance |
|---|---|---|---|
| Posterior HOX genes | Axial patterning, posterior identity | Downregulated in vitamin A-induced anuran limb transformation [6] | Pattern formation, positional identity |
| HOXA cluster | Anteroposterior axis specification | Overexpressed in glioblastoma (GBM) [82] | Prognostic biomarker; therapeutic target |
| HOXB cluster | Neural development, patterning | Dysregulated in glioma tissues [82] | Contributor to tumorigenesis |
| HOXC cluster | Spinal cord development, limb patterning | Upregulated across multiple solid tumors [82] | Cancer progression marker |
| HOXD cluster | Limb development, axial patterning | Promotes tumor proliferation, migration, invasion [82] | Diagnostic and therapeutic candidate |
Recent single-cell transcriptomic analyses of the developing human spine reveal that HOX genes maintain a precise rostrocaudal expression code that patterns anatomical structures along the anterior-posterior axis [2]. Neural crest derivatives unexpectedly retain the anatomical HOX code of their origin while also adopting the code of their destination, a finding confirmed across multiple organs including the fetal limb, gut, and adrenal gland [2]. In pathological contexts, HOX genes are virtually absent in healthy adult brains but are detectably dysregulated in malignant brain tumors, particularly glioblastomas (GBM), where they contribute to tumor progression, therapeutic resistance, and poor survival outcomes [82].
Table 2: HOX Gene Correlations in Human Cancers
| Cancer Type | HOX Gene Expression | Correlated Pathways/Processes | Clinical Impact |
|---|---|---|---|
| Prostate Cancer | HOXA10, HOXC4, HOXC6, HOXC9, HOXD8 negatively correlate with Fos, DUSP1, ATF3 [83] | DNA repair, metabolism, reduced cell adhesion | Apoptosis inhibition; pro-oncogenic |
| Glioblastoma | HOXA family upregulated [82] | Tumor progression, therapy resistance | Negative prognostic marker |
| Multiple Solid Tumors | HOXC family upregulated [82] | Tumor proliferation, invasion | Potential therapeutic target |
Objective: To induce ectopic limb formation in regenerating anuran tadpoles through vitamin A-mediated Hox gene manipulation.
Materials and Reagents:
Procedure:
Objective: To quantify spatial and temporal expression patterns of Hox genes during development and regeneration.
Materials:
Procedure:
The following diagram illustrates the molecular pathway through which vitamin A (retinoic acid) modulates Hox gene expression to induce homeotic transformations, based on findings from anuran models and vertebrate developmental studies [6] [11]:
The following diagram outlines the integrated experimental workflow for investigating Hox gene manipulation in anuran models and translating findings to human biomedical applications:
Table 3: Key Research Reagents for Hox Gene Manipulation Studies
| Reagent/Category | Specific Examples | Function/Application | Considerations |
|---|---|---|---|
| Vitamin A Compounds | All-trans retinoic acid | Induces Hox gene expression changes; axial patterning | Concentration-dependent effects; temporal critical period |
| Animal Models | Rana ornativentris, Xenopus laevis | Regeneration studies; Hox manipulation | Species-specific responses to vitamin A |
| Molecular Analysis | qPCR primers for Hox genes, pitx1 | Gene expression quantification | Verify species-specific specificity |
| Spatial Transcriptomics | Single-cell RNAseq, Visium, in-situ sequencing | HOX code mapping across tissues | High-resolution positional information [2] |
| Human Disease Models | Glioblastoma cell lines, organoids | HOX dysregulation studies | Clinical relevance for therapeutic testing |
| New Approach Methodologies | Organ-on-a-chip, microphysiological systems | Human-relevant toxicity and efficacy testing | FDA ISTAND program qualification [80] [81] |
The experimental protocols outlined herein for manipulating Hox gene expression in anuran models provide a robust framework for investigating the fundamental mechanisms of developmental patterning and their relevance to human biology and disease. The conserved nature of Hox gene function across vertebrates enables direct translation of findings from anuran systems to human biomedical contexts, particularly in understanding congenital disorders affecting axial patterning and HOX gene dysregulation in cancers such as glioblastoma and prostate cancer [82] [83]. As regulatory agencies increasingly emphasize human-relevant models, anuran systems offer a strategically valuable platform that aligns with the principles of reduction and refinement in animal research while providing high-quality developmental insights that can inform therapeutic development for HOX-related pathologies.
The manipulation of Hox gene expression using Vitamin A in anuran models provides a powerful and conserved paradigm for understanding how master regulatory genes control cell fate and morphology. The key takeaway is that retinoic acid acts as a critical upstream signal, capable of reprogramming entire tissue fields by shifting Hox gene expression profiles, as definitively shown in the tail-to-limb transformation. This foundational knowledge not only deepens our grasp of embryonic development and evolution but also opens tangible avenues for regenerative medicine, offering potential strategies for triggering complex tissue regeneration. Future research must focus on achieving finer spatiotemporal control over this signaling pathway and translating these mechanisms into mammalian systems, with direct implications for treating congenital birth defects, driving innovations in organoid engineering, and developing novel therapies for HOX-driven cancers.